The Apollo Program delivered 12 American astronauts to the surface of the Moon. But that program ended in 1972, and since then, no human beings have visited. But Artemis will change that. And instead of just visiting the Moon, Artemis’ aim is to establish a longer-term presence on the Moon. That requires more complexity than Apollo did. Astronauts will need to transfer between vehicles.
Space News & Blog Articles
Well it certainly caught my attention when I saw the headlines “China’s first Space Environment Simulator” sounds like something right out of an adventure holiday. Whilst you can’t buy tickets to ‘have a go’ it’s actually for China to test spacecraft before launching them into the harsh environments of space. It allows researchers to simulate nine environmental factors; vacuum, high and low temperature, charged particles, electromagnetic radiation, space dust, plasma, weak magnetic field, neutral gasses and microgravity – and it even looks futuristic too!
Only the other week I had to fix my leaky tap. That was a nightmare. I cannot begin to imagine how you deal with a leaky spacecraft! In August 2020 Russia announced that their Zvezda module had an air leak. An attempt was make to fix it but in November 2021 another leak was found. Earlier this week, Russia announced the segment is continuing to leak but the crew are in no danger.
Universe Today has surveyed the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, and comets, and what these fantastic scientific fields can teach researchers and space fans regarding the search for life beyond Earth. Here, we will discuss how planetary atmospheres play a key role in better understanding our solar system and beyond, including why researchers study planetary atmospheres, the benefits and challenges, what planetary atmospheres can teach us about finding life beyond Earth, and how upcoming students can pursue studying planetary atmospheres. So, why is it so important to study planetary atmospheres?
If future explorers manage to set up communities on Mars, how will they pay their way? What’s likely to be the Red Planet’s primary export? Will it be Martian deuterium, sent back to Earth for fusion fuel? Raw materials harvested by Mars-based asteroid miners, as depicted in the “For All Mankind” TV series? Or will future Martians be totally dependent on earthly subsidies?
Astronomers have detected a large amount of water vapour in the protoplanetary disk around a young star. There’s at least three times as much water among the dust as there is in all of Earth’s oceans combined. And it’s not spread throughout the disk; it’s concentrated in the inner disk region.
On October 19th, 2017, astronomers with the Pann-STARRS survey observed an Interstellar Object (ISO) passing through our system – 1I/2017 U1 ‘Oumuamua. This was the first time an ISO was detected, confirming that such objects pass through the Solar System regularly, as astronomers predicted decades prior. Just two years later, a second object was detected, the interstellar comet 2I/Borisov. Given ‘Oumuamua’s unusual nature (still a source of controversy) and the information ISOs could reveal about distant star systems, astronomers are keen to get a closer look at future visitors.
If you explore the night sky it won’t be long before you realise there is a lot of dust and gas up there. The interstellar dust between the stars accounts for 1% of the mass of the interstellar medium but reflects 30% of the starlight in infrared wavelengths. The dust plays a key role in the formation of stars and the evolution of the Galaxy. A team of astronomers have attempted to map the dust out to a distance of 3000 light years and have just released the first 3D map of the dust in our Galaxy.
Our gleaming Earth, brimming with liquid water and swarming with life, began as all rocky planets do: dust. Somehow, mere dust can become a life-bearing planet given enough time and the right circumstances. But there are unanswered questions about how dust forms any rocky planet, let alone one that supports life.
Intuitive Machines says it’s putting its Odysseus moon lander to bed for a long lunar night, with hopes of reviving it once the sun rises again near the moon’s south pole.
During the Universe’s Dark Ages, dense primordial gas absorbed and scattered light, prohibiting it from travelling. Only when the first stars and galaxies began to shine in energetic UV light did the Epoch of Reionization begin. The powerful UV light shone through the Universe and punched holes in the gas, allowing light to travel freely.
Here’s a front row seat on what it would be like to return to Earth inside a space capsule. Varda Space Industries’ small W-1 spacecraft successfully landed at the Utah Test and Training Range on February 21, 2024. A camera installed inside the cozy 90 cm- (3 ft)-wide capsule captured the entire stunning reentry sequence, from separation from the satellite bus in low Earth orbit (LEO) to the fiery re-entry through Earth’s atmosphere, to parachute deploy, to the bouncy landing.
The possibility for life beyond the Earth has captivated us for hundreds of years. It has been on the mind of science fiction writers too as our imaginations have explored the myriad possibilities of extraterrestrial life. But what would it really be like if/when we finally meet one; would it lead to war or peace? Researchers have used a complex language model to simulate the first conversations with civilisations from pacifists to militarists and the outcomes revealed interesting challenges.
Ingenuity has been the first aerial vehicle on another world. NASA announced the end of the Martian helicopter’s life at the end of its 72nd flight. During the flight there had been a problem on landing and, following the incident a few photos revealed chips in one of the rotor blades but nothing too serious. New images have been revealed that show the craft is missing one of its rotor blades entirely!
Universe Today has explored the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, and solar physics, and what this myriad of scientific disciplines can teach scientists and the public regarding the search for life beyond Earth. Here, we will explore some of the most awe-inspiring spectacles within our solar system known as comets, including why researchers study comets, the benefits and challenges, what comets can teach us about finding life beyond Earth, and how upcoming students can pursue studying comets. So, why is it so important to study comets?
NASA’s DART (Double Asteroid Redirection Test) mission was hailed a success when it collided with its target asteroid Dimorphos last year. The purpose of the endeavour was to see if it could redirect an asteroid and, since the impact, astronomers have been measuring and calculating the impact on the target. It is incredible that the 580kg spacecraft travelling at 6 km/s was able to impart enormous kinetic energy to the 5 billion kg asteroid.
When a satellite reaches the end of its life, it has only two destinations. It can either be maneuvered into a graveyard orbit, a kind of purgatory for satellites, or it plunges to its destruction in Earth’s atmosphere. The ESA’s ERS-2 satellite took the latter option after 30 years in orbit.
Plate tectonics is not something most people would associate with Mars. In fact, the planet’s dead core is one of the primary reasons for its famous lack of a magnetic field. And since active planetary cores are one of the primary driving factors of plate tectonics, it seems obvious why that general conception holds. However, Mars has some features that we think of as corresponding with plate tectonics – volcanoes. A new paper from researchers at the University of Hong Kong (HKU) looks at how different types of plate tectonics could have formed different types of volcanoes on the surface of Mars.
The Star Wars world Tatooine is one of the most recognizable planets in the realm of science fiction. It’s a harsh place, and its conditions shaped the hero Luke Skywalker in many ways. In the reality-based Universe, there may not be many worlds like it. That’s because, according to a new study out from Yale researchers, the Universe likes to be more orderly, and that affects planets and their environments.
Astronomers have found three new moons orbiting our Solar System’s ice giants. One is orbiting Uranus, and two are orbiting Neptune. It took hard work to find them, including dozens of time exposures by some of our most powerful telescopes over several years. All three are captured objects, and there are likely more moons around both planets waiting to be discovered.