The small island nations of the South Pacific are facing the harsh reality of sea level rise. Within 50 years they will be swamped by rising seas linked to climate change. That’s part of a stark forecast from a sea level change science team at NASA and leading universities.
Space News & Blog Articles
In recent years, the number of known extrasolar planets (aka. exoplanets) has grown exponentially. To date, 5,799 exoplanets have been confirmed in 4,310 star systems, with thousands more candidates awaiting confirmation. What has been particularly interesting to astronomers is how M-type (red dwarf) stars appear to be very good at forming rocky planets. In particular, astronomers have detected many gas giants and planets that are several times the mass of Earth (Super-Earths) orbiting these low-mass, cooler stars.
Meteorites strike Earth every day. It’s estimated that about 100 – 300 metric tonnes of material strike our planet every year. Most of it consists of sand-grain sized dust that burns up in the atmosphere, but each year a few thousand will reach Earth’s surface.
We often talk about Jupiter’s Great Red Spot quite candidly but forget that hurricanes can be devastating, destructive forces here on Earth. Hurricane Milton is a reminder of the awful effects here on Earth. It came out of nowhere, appearing in the Gulf of Mexico as a tropical storm and two days later was a category 5 hurricane. It tracked a course and hit land near Siesta Key in Florida. NASA have been tracking the storm from space, recording high sea temperatures that fuelled the storm allowing it to grow. Images have been released from the ISS showing the sheer enormity of the hurricane.
The total number of exoplanets discovered to date totals 5,288. Among them are a host of rocky, Earth-like exoplanets but none of them seem to have atmospheres. It’s a fairly challenging observation to make but a team of researchers think they’ve come up with a new, simpler technique. It involves measuring the combined temperature of a star and the exoplanet just before the planet passes behind. If it’s lower than expected, the planet is likely to have an atmosphere regulating its temperature!
Mars has captured our imagination for centuries. Ever since the invention of the telescope our imagination has often drifted toward the possibility of life on Mars. Exploration of the red planet has often revealed that Mars once had plenty of water on its surface but it’s no longer there. Now NASA’s Curiosity rover has found deposits of carbon-rich minerals that could give us a much needed clue.
As comets travel along their orbit they dump material along the way. A stream of debris known as the Taurid swarm has been keeping astronomers attention. It’s thought the debris is the remains of comet Encke which has also been fuelling the Taurid meteor shower. The swarm is believed to be composed of mostly harmless, tiny objects but there has been concern that there may be some larger, kilometre size chunks. Thankfully, new observations reveal there are of the order of 9-14 of these 1km rocks.
NASA has sent a whole host of spacecraft across the Solar System and even beyond. They range from crewed ships to orbit and to the Moon to robotic explorers. Among them are a range of mission classes from Flagships to Discovery Class programs. Now a new category has been announced: Probe Explorers. This new category will fill the gap between Flagship and smaller missions. Among them are two proposed missions; the Advanced X-ray Imaging Satellite and the Probe Far-Infrared Mission for Astrophysics.
A long time ago, the Milky Way Galaxy was busy being a prodigious star-formation engine. In those times, it turned out dozens or hundreds of stars per year. These days, it’s rather more quiescent, cranking out only a few per year. Astronomers want to understand the Milky Way’s star-birth history, so they focus on some of the more recent star litters to study. One of them is Westerlund 1, a young so-called “super star cluster” that looks compact and contains a diverse array of older stars. It was part of a burst of star creation around 4 to 5 million years ago.
TESS, the Transiting Exoplanet Survey Satellite has been on the lookout for alien worlds since 2018. It has just hit the news again having identified an extreme triple star system where two stars orbit each other every 1.8 days. The third component circles them both in 25 days – this puts the entire system within the orbit of Mercury with a little wriggle room to spare! To visual observers, it looks like a single star but the power of TESS revealed a flicker as the stars line up and pass one another along our line of sight. Eventually, the two inner stars will merge, triggering a supernova event!
Every second in the Universe, more than 3,000 new stars form as clouds of dust and gas undergo gravitational collapse. Afterward, the remaining dust and gas settle into a swirling disk that feeds the star’s growth and eventually accretes to form planets – otherwise known as a protoplanetary disk. While this model, known as the Nebular Hypothesis, is the most widely accepted theory, the exact processes that give rise to stars and planetary systems are not yet fully understood. Shedding light on these processes is one of the many objectives of the James Webb Space Telescope (JWST).
China have a roadmap to sent astronauts to the Moon in 2030 and when they do, they are going with a very definite nod to the Chinese origins to the rocket! Their officials have unveiled the new look Chinese space suit with all the mod cons but with a design that is somewhat reminiscent of Chinese armour. There will some fabulous features like the close and long distance field of view visor, a chest control panel and a protective material to shield against the harmful lunar environment.
Mining the Moon to extract its resources is a critical step on humanity’s path into the solar system. One of the most common resources on the Moon is considered relatively valuable here on Earth – titanium. At $10,000 a ton, it is one of the more valuable metals used in various industries, such as aerospace and nanotechnology. So, could we utilize titanium from the Moon to supply Earth’s economy with more of this valuable material? That question is the focus of a paper from researchers at Uppsala University in Finland.
The European Space Agency’s Hera spacecraft is on its way to do follow-up observations of Dimorphos, two years after an earlier probe knocked the mini-asteroid into a different orbital path around a bigger space rock.
Small primordial black holes (PBHs) are one of the hot topics in astronomy and cosmology today. These hypothetical black holes are believed to have formed soon after the Big Bang, resulting from pockets of subatomic matter so dense that they underwent gravitational collapse. At present, PBHs are considered a candidate for dark matter, a possible source of primordial gravitational waves, and a resolution to various problems in physics. However, no definitive PBH candidate has been observed so far, leading to proposals for how we may find these miniature black holes.
If you want to pinpoint your place in the Universe, start with your cosmic address. You live on Earth->Solar System->Milky Way Galaxy->Local Cluster->Virgo Cluster->Virgo Supercluster->Laniakea. Thanks to new deep sky surveys, astronomers now think all those places are part of an even bigger cosmic structure in the “neighborhood” called The Shapley Concentration.
The James Webb Space Telescope (JWST) has revealed magnificent things about the Universe. Using its sophisticated infrared optics, it has peered deeper into space (and farther back in time) than any observatory to date, gathering data on the first galaxies to form in our Universe. It has also obtained spectra from exoplanets, revealing things about the chemical composition of their atmospheres. In addition, Webb has provided some stunning views of objects within our Solar System, like Jupiter and its auroras, Saturn’s rings and moons, and Neptune and its satellites.
For the past ten years, Australia’s ARC Centre of Excellence in All Sky Astrophysics in 3 Dimensions (ASTRO 3D) has been investigating star formation, chemical enrichment, migration, and mergers in the Milky Way with the Anglo-Australian Telescope (AAT). Their work is part of the GALactic Archaeology with HERMES (GALAH) project, an international collaboration of more than 100 scientists from institutes and universities worldwide. These observations have led to the highest spectral resolution multi-dimensional datasets for over a million stars in the Milky Way.
Yesterday the Sun released a huge solar flare, and it’s heading toward Earth! It’s nothing to worry about since it’s nowhere near as large as the Carrington Event of 1859, but it is large enough to give us some amazing aurora.
Physical infrastructure on the Moon will be critical to any long-term human presence there as both America and China gear up for a sustained human lunar presence. Increasingly, a self-deploying tower is one of the most essential parts of that physical infrastructure. These towers can hold numerous pieces of equipment, from solar panels to communications arrays, and the more weight they can hold in the lunar gravity, the more capable they become. So it’s essential to understand the best structural set-up for these towers, which is the purpose of a recent paper by researchers at North Carolina State University and NASA’s Langley Research Center.
It’s not long before a conversation about space travel is likely to turn to the impact on the human body. Our bodies have evolved to exist on Earth with a constant force of 1G acting upon them but up in orbit, all of a sudden that force is apparently lacking. The impact of this is well known; muscle loss and reduction in bone density but there are effects of spaceflight. Cosmic radiation from the Galaxy has an impact on cognition too, an effect that has recently been studied in mice!