Asteroids come in many shapes and sizes. Most are spherical, though many have a feature that can make them difficult to land on – they are essentially just collections of rocks loosely bound together by gravity. In space exploration jargon, they are known as “rubble piles.” Many of the asteroids humanity has visited are considered rubble piles, including Itokawa and Dimorphos, the destinations for Hayabusa and DART, respectively. But, as the trials of the Philae spacecraft showed when it tried to meet up with the comet 67P/Churyumov-Gerasimenko, landing on these objects with very low surface gravity can be difficult. Enter a new concept from researchers at the University of Colorado, Boulder. Their idea, known as Area-of-Effect Softbots (AoES), could help future asteroid explorers, and even miners, overcome some of the challenges facing them at these small bodies.
Space News & Blog Articles
With its thick, cloudy atmosphere, Venus has long held mysteries about its surface. It was only in the late 20th century that astronomers had detailed observations of the Venusian landscape, with the Russian Venera landers in the 1970s and 1980s, and later the 1990 Magellan mission, which made high-resolution radar maps of the surface. There are many things we still don’t know, but one thing we do know is that the surface of Venus is young. And a new study in Nature Astronomy may know why.
There’s an old joke among astronomy students about a question on the final exam for a cosmology class. It goes like this: “Describe the Universe and give three examples.” Well, a team of researchers in Germany, the U.S., and the UK took a giant leap toward giving at least one accurate example of the Universe.
According to our predominant cosmological models, Dark Matter accounts for roughly 85% of the mass in the Universe. While ongoing efforts to study this mysterious, invisible mass have yielded no direct evidence, astrophysicists have been able to measure its influence by observing Dark Matter Haloes, gravitational lenses, and the effect of General Relativity on large-scale cosmic structures. And with the help of next-generation missions like the ESA’s Euclid and NASA’s Nancy Grace Roman space telescopes, Dark Matter may not be a mystery for much longer!
In its continued support for the Artemis missions, a three fully-electric, environmentally friendly, and specially designed vehicles were recently delivered to NASA for the purpose of ferrying future Artemis astronauts from their crew quarters to historic Launch Pad 39B before their journey to the Moon. The vehicles were built and delivered by Canoo Technologies Inc. based in Torrance, California, and comes just over a year after NASA awarded Canoo the contract to provide the new vehicles, and almost two years since NASA put out a call for proposals.
The cosmic zoo has strange beasts that astronomers stumble across in the most fascinating ways. Not long ago a team in Australia found a highly unusual magnetar, one of the weirder denizens of the starry zoo. It’s called GPM J1839-10 and it lies some 15,000 light-years away in the direction of the constellation Scutum.
Impact craters are nature’s signature from a more chaotic time in our Solar System’s history. A quick glance at the Moon’s disfigured surface makes that clear. Same with Mars, though a telescope is needed to examine it. Or better yet, an orbital spacecraft with a powerful camera.
China’s next-generation crew capsule was given an updated timeline this week. According to Yang Liwei, deputy chief designer of China’s Human Spaceflight Program, the new capsule will make its first flight in 2027 or 2028. Meeting this timeline will be a key milestone in China’s recently announced plan to land on the Moon by 2030.
Sunlike stars and those smaller than the Sun end their lives as white dwarfs. Without a continued source of energy from hydrogen fusion, these stars eventually collapse under their own weight. They would continue collapsing were it not for the pressure of electrons. As long as the remaining mass of a star is less than about 1.4 Suns, the electron pressure and gravitational pull will balance each other, creating a white dwarf.
The more astronomers look at the early Universe, the more discoveries they make. Some of those finds change what they thought they knew about the infancy of the cosmos. For example, the James Webb Space Telescope (JWST) recently found evidence of carbon-based molecules and dust existing only a billion years after the Big Bang. It looks a bit different from the dust observed later in the Universe.
The ancient Universe is weird and secretive. Scientists have made laudable progress in uncovering more and more information on how the Universe began and what conditions were like all those billions of years ago. Powerful infrared telescopes, especially the ground-breaking James Webb Space Telescope, have let astronomers study the ancient light from the early Universe and remove some of the secrecy.
Thanks to the laws of physics, there are two basic rules about telescopes. The first is that the bigger your primary lens or mirror, the higher the resolution of your telescope. The second is that lenses and mirrors have to be curved to focus light into an image. So, if you want a space telescope sensitive enough to see the atmospheres of distant exoplanets, Your telescope is going to need a large curved mirror or lens. But neither of these things is technically true, as a newly proposed telescope design demonstrates.
When the DART (Double Asteroid Redirection Test) spacecraft intentionally slammed into asteroid moonlet Dimorphos on September 26, 2022, telescopes around the world and those in space watched as it happened, and continued to monitor the aftermath.
Sending astronauts to the moon is OK — but more Americans think NASA should instead put a high priority on monitoring outer space for asteroids and other objects that could pose a threat to Earth, according to the Pew Research Center’s latest survey focusing on Americans’ perspectives on space policy.
Space-based solar power (SBSP) is considered one of the most promising technologies for addressing Climate Change. The concept calls for satellites in Low Earth Orbit (LEO) to collect power without interruption and beam it to receiving stations on Earth. This technology circumvents the main limiting factor of solar energy, which is how it is subject to the planet’s diurnal cycle and weather. While the prospect of SBSP has been considered promising for decades, it’s only in recent years that it has become practical, thanks to the declining costs of sending payloads to space.
It seems like every week, researchers are finding more and more interesting exoplanets. Many of them have analogs in our own solar system – hot Jupiter or Super Earth are commonly used as descriptions. However, there is a feature of a solar system that doesn’t exist in our solar system but might somewhere out in the galaxy – a Trojan planet. Now researchers from the Centro de Astrobiologia in Madrid and colleagues in the UK, EU, and US have found what they believe to be the first possible evidence of a Trojan planet.
In radio astronomy, there are lots of natural radio signals to observe. The glow of hydrogen gas, the swirl of electrons along a magnetic field, or the pop-pop-pop of pulsars. These signals usually have a very natural character to them, so astronomers can distinguish them from the artificial chirps and chatters of terrestrial sources. But when you’re looking for the signals of alien civilizations, things can get more tricky. They should have an artificial character similar to the radio signals of humans. So how can astronomers distinguish between the distant artificial signal and the local ones?
Until recently, astronomers could not observe the first stars and galaxies that formed in the Universe. This occurred during what is known as the “Cosmic Dark Ages,” a period that took place between 380,000 and 1 billion years after the Big Bang. Thanks to next-generation instruments like the James Webb Space Telescope (JWST), improved methods and software, and updates to existing observatories, astronomers are finally piercing the veil of this era and getting a look at how the Universe as we know it began.
One of the most commonly discussed challenges when starting our species’ space exploration journey is how to get the resources necessary for life off of the Earth. Typically this is thought of as two things – water and oxygen, but, luckily, oxygen can be supplied by splitting apart a water molecule, so the most critical resource we could find in space is water. Commonly called a “volatile” in the language of space resources, water has been the focal point of many plans for in-situ resource utilization on the Moon, Mars, and elsewhere. Some of those plans have been well thought out, others not. One particular showed some promise when it was selected as part of NASA’s Institute for Advanced Concepts (NIAC) funding back in 2019, and here we’ll take a closer look at it.
The Gemini South telescope has captured a new image of the glowing nebula IC 2220. Nicknamed the Toby Jug Nebula, this object got its name because it looks like an old English jug. But no fun drinking games are happening here.
As of 2019, China began conducting preliminary studies for a crewed lunar mission that would take place by the 2030s. Two years later, the China National Space Agency (CNSA) and Roscosmos announced a partnership to create an International Lunar Research Station (ILRS) around the South Pole-Aitken Basin. The proposed timeline for development came down to three phases: Reconnaissance (2021-25), Construction (2025-35), and Utilization (2035-onward). Earlier this year, China announced that its space agency would send the first crewed mission to the lunar surface by 2030.