Fast Radio Bursts (FRBs) are cosmic mysteries that are slowly but surely revealing their secrets. These bright flashes of light are visible in the radio wave part of the spectrum and usually last only a few milliseconds before fading away forever. They come from random locations across the Universe and are so powerful that we can see them emanating from billions of light-years away.
Space News & Blog Articles
Amateur astrophotography is becoming increasingly popular among the astronomy community, as advancements in telescope and camera technologies allow individuals from all walks of life to observe the heavens in mind-blowing detail, including our own Sun, albeit with the proper protective equipment. This was recently demonstrated by Andrew McCarthy (Twitter @AJamesMcCarthy), who owns and operates Cosmic Background Studios, and is originally from Northern California but currently resides in Florence, Arizona.
In astronomy, we speak casually of extremely large numbers and extremely vast distances as if they’re trivial. A supermassive black hole can have several billion solar masses, a distant quasar is 500 million light-years away, etc. Objects like galaxies that are mere tens of millions of light years away start to seem familiar.
Located about 6,500 light-years away in the constellation Taurus resides one of the best-studied cosmological objects known as the Crab Nebula (aka. Messier 1). Originally discovered in the 18th century by English astronomer John Bevis in 1731, the Crab Nebula became the first object included by astronomer Charles Messier in his catalog of Deep Sky Objects. Because of its extreme nature, scientists have been studying the Crab Nebula for decades to learn more about its magnetic field, its high-energy emissions (x-rays), and how these accelerate particles to close to the speed of light.
As the European Space Agency’s Juice spacecraft headed out on an eight-year trip to Jupiter’s icy moons, it turned back to snap some selfies with Earth in the background — and those awesome shots are just the start.
In the 1960s, astronomers began noticing a pervasive microwave background visible in all directions. Thereafter known as the Cosmic Microwave Background (CMB), the existence of this relic radiation confirmed the Big Bang theory, which posits that all matter was condensed onto a single point of infinite density and extreme heat that began expanding ca. 13.8 years ago. By measuring the CMB for redshift and comparing these to local distance measurements (using variable stars and supernovae), astronomers have sought to measure the rate at which the Universe is expanding.
SpaceX’s Starship launch system lifted off on its first full-scale test flight today, rising majestically from its Texas launch pad but falling short of stage separation.
Astrophotographer Todd Salat was out in the early hours of April 15, 2023, hoping to capture an aurora display over Donnelly Dome near Delta Junction, Alaska. While the stunning aurora didn’t disappoint, Salat was in for a surprise: a weird spiral appeared in the sky over the summit.
A new era of exploration at Jupiter’s moons began last week with the launch of the European Space Agency’s Juice, the Jupiter Icy Moons Explorer. This mission will visit three of Jupiter’s largest moons — Europa, Callisto and Ganymede — to investigate whether they could be potentially habitable, a question that’s been highly debated since the first evidence of subsurface oceans on these moons was seen by the Galileo mission in the 1990s.
When astronauts return to the Moon in the next few years, the plan is to have them stay for good while establishing a permanent outpost on Earth’s nearest celestial neighbor. Like all space missions, a lunar outpost will require fuel for long-term sustainability, but would it be better to mine fuel on the Moon or get fuel resupply from the Earth? This is what a team of researchers led by Bocconi University in Italy hope to address as they addressed the best option in terms of deriving fuel from either the Earth or the Moon.
JUICE launches to Jupiter and its moons. A new JWST image of supernova remnant Cassiopeia A. Machine learning cleans up the Universe, and improves images of a black hole’s event horizon. Terran 1 is dead, long live Terran R.
The New Horizons mission currently flying through the Kuiper Belt could be facing an unexpected change of plans. NASA’s Science Mission Directorate is soliciting input on turning the spacecraft into a heliospheric science probe. The agency wants to do it much sooner than mission planners intended. If that happens, it will stop further planned planetary exploration of objects in that distant regime of the Solar System.
Astronomers have used machine learning to sharpen up the Event Horizon Telescope’s first picture of a black hole — an exercise that demonstrates the value of artificial intelligence for fine-tuning cosmic observations.
When low to medium-mass stars exhaust their supply of hydrogen, they exit their main sequence phase and expand to become red giants – what is known as the Asymptotic Giant Branch (AGB) phase. Stars in this phase of their evolution become variable (experiences changes in brightness) to shed their outer lays, spreading dust throughout the interstellar medium (ISM) that is crucial to the development of planetary nebulas and protoplanetary systems. For decades, astronomers have sought to better understand the role Red Giant stars play.
Testing the possibility of models of gravity different from general relativity may be closer to home than we think. A team of researchers has proposed that we might be able to use seismic motions in the Earth itself to test for modified gravity.
Spaceflight takes a serious toll on the human body. As NASA’s Twin Study demonstrates, long-duration stays in space lead to muscle and bone density loss. There are also notable effects on the cardiovascular, central nervous, and endocrine systems, as well as changes in gene expression and cognitive function. There’s also visual impairment, known as Spaceflight-Associated Neuro-ocular Syndrome (SANS), which many astronauts reported after spending two months aboard the International Space Station (ISS). This results from increased intracranial pressure that places stress on the optic nerve and leads to temporary blindness.
Using data from the Mars Reconnaissance Orbiter (MRO), planetary scientists have created one of the most unique and detailed maps of Mars ever. But fair warning, the biggest version of this is a could overload your computer.
The first solar eclipse of 2023 will span Australia and southeast Asia into the Pacific Ocean region.
Primordial holes formed in the exotic conditions of the big bang may have become their own source of matter and radiation.
Our planet hasn’t always been the warm, inviting place we know today. At least five times in its history, Earth froze over, locked in the grip of an ice age. Scientists sometimes refer to these periods as “Snowball Earth.” The popular idea is that everything was covered with ice, making life difficult, if not impossible. But, there’s new evidence that during at least one of these icy periods, parts of Earth’s surface could have been more like a giant mushy ball of slush.
Amanda Morris, a press release writer at Northwestern University, describes an important astronomical effect in terms entertaining enough to be worth reposting here: “The cosmos would look a lot better if the Earth’s atmosphere wasn’t photobombing it all the time.” That’s certainly one way to describe the air’s effect on astronomical observations, and it’s annoying enough to astronomers that they constantly have to correct for distortions from the Earth’s atmosphere, even at the most advanced observatories at the highest altitudes. Now a team from Northwestern and Tsinghua Universities have developed an AI-based tool to allow astronomers to automatically remove the blurring effect of the Earth’s atmosphere from pictures taken for their research.