The first good comet of the year, Comet E3 ZTF is a fine object for northern hemisphere observers in January.
Space News & Blog Articles
Solar power, long considered the leading contender among renewable energy sources, has advanced significantly over the past few decades. The cost of manufacturing and installing solar panels has dropped considerably, and efficiency has increased, making it price competitive with coal, oil, and fossil fuels. However, some barriers, like distribution and storage, still prevent solar power from being adopted more aggressively. In addition, there’s the ever-present issue of intermittency, where arrays cannot collect power in bad weather and during evenings.
If and when we ever get an asteroid mining industry off the ground, one of the most important decisions to be made in the structure of any asteroid mining mission would be how to get the resources back to where all of our other infrastructure is – somewhere around the Earth. That decision typically will focus on one of two propulsion methodologies – chemical rockets, such as those we already use to get us into space in the first place, or solar sails, which, while slower and unable to get us into orbit, don’t require any fuel. So, which propulsion methodology is better for these future missions? A study by researchers at the University of Glasgow looked at those two scenarios and came out with a clear-cut answer – solar sails.
For the first time this week, photos from the James Webb Space Telescope (JWST) revealed that stellar bars were present in some galaxies as far back as 11 billion years ago. Stellar bars are a defining feature of about two-thirds of all spiral galaxies in the Universe, including our own Milky Way. The discovery has implications for astronomers’ understanding of galactic evolution, indicating that bars form very quickly and may persist for much of a galaxy’s lifespan, influencing its shape and structure.
NASA is looking for dangerous asteroids, Io is blasting lava into space, the solar wind could be creating water on the Moon, space power is finally getting a test.
Even from beyond the grave, Arecibo is still contributing to new discoveries. Back in October, researchers released a “treasure trove of data” from what was then the world’s most powerful radio telescope on the radar signatures of near-Earth asteroids (NEAs). Not only will these observations help defend the planet if any of those asteroids happen to be hazardous, but they can also help the burgeoning asteroid mining industry scan for targets.
Space-age technologies have made fundamental changes to the way we live our lives. Avionics allow us to fly to other continents on almost a moment’s notice. GNSS services enable us to navigate our cars on roads we’ve never driven before without a paper map. And some form of radio has become the backbone of both our entertainment and communication networks. So what happens if a solar storm disrupts all of that? That is the focus of a new review paper by Natalia Buzulukova and Bruce Tsurutani, one of the world’s leading experts on space weather. They stress that we haven’t adequately prepared for a once-in-a-millennial solar storm that may be coming soon.
At this point in its mission, NASA’s Mars Perseverance Rover has collected almost 50% of its samples. The rover is now building its first sample ‘depot’ on the surface of Mars. The depot is a flat, obstacle-free area with 11 separate landing circles, one for each sample tube and one for the lander.
In the giant galaxy clusters in the Universe, which can consist of hundreds or thousands of galaxies, there are countless “rogue” stars wandering between them. These stars are not gravitationally bound to any individual galaxy but to the halo of galaxy clusters themselves and are only discernible by the diffuse light they emit – “Ghost Light” or “Intracluster light” (ICL). For astronomers, the explanation for how these stars became so scattered throughout their galaxy clusters has always been an unresolved question.
In any plan to establish a presence on the Moon, the South Pole is key. There, in the deep permanent shadows of the region’s craters, are voluminous quantities of water ice. And water ice means water, oxygen, and even rocket fuel.
In a recent study published in Astronomy and Astrophysical Letters, a team of researchers at the Massachusetts Institute of Technology (MIT) used various computer models to examine 69 confirmed binary black holes to help determine their origin, and found their data results changed based on the model’s configurations. Essentially, the input consistently altered the output, and the researchers wish to better understand both how and why this occurs and what steps can be taken to have more consistent results.
Since last summer, Jupiter’s third largest moon, Io, has been lighting up the Jovian system with a major burst of volcanic activity. As the Solar System’s most volcanically active world, Io is no stranger to such outbursts, but this year’s display has been unusually energetic.
Even though our Sun is now a solitary star, it still has siblings somewhere in the Milky Way. Stars form in massive clouds of gas called Molecular Clouds. When the Sun formed about five billion years ago, other stars would’ve formed from the same cloud, creating a star cluster.
In a recent study published in Nature Communications, an international team of researchers led by Stanford University used artificial intelligence (AI) to examine the formation of sand ripples and sand dunes of two distinct sizes on Mars. These formations might help scientists better understand Mars’ atmospheric history through examining the fossilized forms of these aeolian (windblown) structures using statistical analyses.
It’s winter here on Earth, for those living in the northern hemisphere. This means snow, rain, colder temperatures, and all the other things we associate with “the festive season.” Much the same is true for Mars (aka. “Earth’s Twin”), which is also experiencing winter in its northern hemisphere right now. This means colder temperatures, especially around the polar regions where it can get as low as -123 °C (-190 °F), as well as ice, snow, frost, and the expansion of the polar ice caps – which are composed of both water ice and frozen carbon dioxide (“dry ice”).
Earth’s oxygen-rich atmosphere does more than provide the foundation for complex life. The oxygen in the atmosphere is so reactive that it readily combines with other chemical elements. Together, they form important ores like iron oxides and manganese oxides found in the Earth’s crust. So, when rovers spotted manganese oxides on Mars, scientists interpreted them as clues to Mars’ earlier atmosphere: it must have contained oxygen.
Efforts to create a memorial celebrating the legacy of Leonard Nimoy, the actor who played a pointy-eared alien named Spock on “Star Trek,” have shifted to warp speed nearly eight years after his death.
The second Moon race is in full swing, with the world’s two big superpowers angling to score a new set of firsts on the lunar surface. NASA’s Artemis program recently clocked up its first success with the splashdown of Orion, but China is looking to take the lead when it comes to setting up a fully-fledged lunar research station. One of the first steps in that process – figuring out where to put it. That is what a new paper attempts to quantify, and it comes up with a practical solution – the south pole.
Microwaves are useful for more than just heating up leftovers. They can also make landing pads on other worlds – at least according to research released by a consortium of scientists at the University of Central Florida, Arizona State University, and Cislune, a private company. Their research shows how a combination of sorting the lunar soil and then blasting it with microwaves can create a landing pad for future rockets on the Moon – and save any surrounding buildings from being blasted by 10,000 kph dust particles.
Some of the most useful discoveries about distant objects take time to complete. For example, several generations of planetary scientists have been studying the clouds of Jupiter since the late 1970s. Their observations focused on the planet’s upper troposphere. The results show unexpected patterns in how the temperatures of Jupiter’s belts and zones change over time.
Throughout the Solar System, planets and moons bear the scars of a past fraught with collisions. The Moon, Mercury, and Mars are so scarred from these impacts that craters overlap one another on their surfaces. Earth was subject to the same bombardment, though most of its impact scars disappeared over time due to active geology.