Life might have wiped itself out on early Mars. That’s not as absurd as it sounds; that’s sort of what happened on Earth.
Space News & Blog Articles
Since the 1970s, the ongoing exploration of Mars has revealed that the planet has had a most interesting history. While conditions there are not hospitable to life today, scientists know Mars was once a much warmer, wetter place, with flowing water on its surface. According to new research led by the University of Arizona (UoA), Mars may have been a “pale blue dot” covered with oceans while Earth was still a ball of slowly-cooling molten rock. This discovery could allow for new research into a previously-overlooked period in Mars’ geological history and the formation and evolution of the Solar System.
Exoplanet discovery space hosts all kinds of interesting “super” worlds. There are super-Earths, super-Neptunes, and, of course, Super-Jupiters. Recently, the WIYN telescope on Kitt Peak in Arizona did a follow-up observation of a gas giant discovered by TESS (the Transiting Exoplanet Survey Satellite). The world is fluffy and weird and it’s orbiting a red giant star. Oddly enough, it shouldn’t even exist. Yet, there it is happily orbiting a star some 580 light-years from Earth.
We recently examined how and why the planet Venus could answer the longstanding question: Are we alone? Despite its harsh environment on the surface, its atmosphere could be hospitable for life as we know it. Here, we will examine the planet Mars, aka the Red Planet and the fourth planet in our solar system, which has been marveling sky watchers from ancient times to the present day.
The Pillars of Creation revealed by JWST. It seems like Big Rip isn’t happening after all. Black holes twisting spacetime into knots. Jets that seem to be going faster than the speed of light.
NASA scientist have released images combining the early data from the James Webb Space Telescope with X-ray data taken with the Chandra Observatory. Besides their beauty, the images offer insights into the inner workings of some of the most complex astrophysical phenomena in the universe.
What if you placed an Earth-sized planet in a close orbit around an M-dwarf star? It’s more than an academic question since M dwarfs are the most numerous stars we know. A group of astronomers studying the planet GJ 1252b found an answer and it’s not pretty.
Black holes are among the most awesome and mysterious objects in the known Universe. These gravitational behemoths form when massive stars undergo gravitational collapse at the end of their lifespans and shed their outer layers in a massive explosion (a supernova). Meanwhile, the stellar remnant becomes so dense that the curvature of spacetime becomes infinite in its vicinity and its gravity so intense that nothing (not even light) can escape its surface. This makes them impossible to observe using conventional optical telescopes that study objects in visible light.
In 2011, the Nobel Prize in physics was awarded to Perlmutter, Schmidt, and Reiss for their discovery that the universe is not just expanding, it is accelerating. The work supported the idea of a universe filled with dark energy and dark matter, and it was based on observations of distant supernovae. Particularly, Type Ia supernovae, which have consistent light curves we can use as standard candles to measure cosmic distances. Now a new study of more than 1,500 supernovae confirms dark energy and dark matter, but also raises questions about our cosmological models.
Exactly 100 days ago NASA revealed the first images from James Webb Space Telescope. Carina nebula, SMACS 0723, WASP-96b, Southern Ring Nebula and Stephan’s Quintet. Since then we have had a lot of great images, science papers and other releases from JWST. So here’s an overview of everything you need to know about James Webb’s discoveries in its first 100 days.
The Curiosity rover has now reached its primary target on Mount Sharp on Mars, the mountain in the middle of Gale Crater the rover has been climbing since 2014. This target is not the summit, but a region over 600 meters (2,000 feet) up the mountain that planetary geologists have long anticipated reaching.
New research shows that the best way to protect future Martian astronauts from deadly solar radiation is as simple as can be. For good shielding, they just need to put as much stuff between them and the sky as possible.
Europe, the Middle East, and northeast Africa will see the final partial solar eclipse of 2022 next Tuesday.
Gamma-ray bursts (GRBs) are one of the most mysterious transient phenomena facing astronomers today. These incredibly energetic bursts are the most powerful electromagnetic events observed since the Big Bang and can last from a few milliseconds to many hours. Whereas longer bursts are thought to occur during supernovae, when massive stars undergo gravitational collapse and shed their outer layer to become black holes, shorter events have also been recorded when massive binary objects (black holes and neutron stars) merge.
The James Webb Space Telescope is living up to expectations. When it was launched, NASA Administrator Bill Nelson said it would “… open up secrets of the universe that will be just stupendous, if not almost overwhelming.” Nelson’s statement rings true a few months into the telescope’s multi-year mission.
Astronomers have spotted barium in the atmosphere of a distant exoplanet. With its 56 protons, you have to run your finger further down the periodic table than astronomers usually do to find barium. What does finding such a heavy element in an exoplanet atmosphere mean?
For decades, scientists have theorized that a massive impact caused the Cretaceous-Paleogene extinction event. This event occurred about 66 million years ago and caused the mass extinction of about 75% of all plant and animal species on Earth (including the non-avian dinosaurs). With the discovery of the massive Chicxulub crater in the Yucatan Peninsula (southern Mexico) in the 1970s, scientists concluded that they’d found the impact responsible. Based on all the available data, the Chicxulub Impact event is believed to have been as powerful as 100,000 billion metric tons (110,231 U.S tons) of TNT.
As the ages pass the Moon slowly drifts away from the Earth. In conjunction the length of our day gradually gets longer. For the first time astronomers have been able to estimate the length of the day and the distance to the Moon as it was almost two and a half billion years ago. Back then, our day was only 17 hours long.
We recently examined how and why Saturn’s largest moon, Titan, could answer the longstanding question: Are we alone? It’s the only moon that possesses a thick atmosphere and the only planetary body other than Earth (so far) that has liquid bodies on its surface. These characteristics alone make Titan an enticing location to search for life beyond Earth. In contrast, what if life were to be found in one of the unlikeliest of places and on a planet that is known to possess some of the harshest conditions ever observed?
In August 2017, astronomers observed a Gravitational Wave (GW) signal that resulted from the merger of two neutron stars – known as a “kilonova” event. The aftermath of this event (GW170817) was studied by 70 ground-based and space-based observatories in multiple wavelengths. This was the first time astronomers observed a binary neutron star merger in terms of electromagnetic radiation (particularly gamma rays) and GWs. The energy released by this merger was comparable to that of a supernova, leading astronomers to theorize that it must have resulted in a black hole.
Former NASA astronaut Jim McDivitt, who commanded the important Gemini IV and Apollo 9 missions – both crucial for NASA’s ability to reach the Moon — has died at age 93. His family said he passed away peacefully in his sleep on October 13, 2022.