In just a few years, astronauts will walk on the surface of the Moon for the first time since the Apollo Era. In addition to the Artemis Program, NASA’s fabled return to the Moon, there are also a number of planned missions involving the European Space Agency (ESA), JAXA, China, and Russia. By the 2030s, NASA and China hope to send crewed missions to Mars, which will culminate in the creation of a permanent base on the surface.
Space News & Blog Articles
In space, it’s almost always raining dust. Most of that dust is so small a microscope would have a hard time seeing it. Created by asteroid impacts, millions of these fine dust particles collide with Earth’s upper atmosphere every second. When they hit that atmosphere, they start a complex dance of plasmas and energy that can be difficult to see and understand.
Hubble is getting a bit long in the tooth. Initially launched in 1990, it has been one of the most spectacularly successful orbital satellites in history. But it has also had its fair share of errors, starting almost immediately upon its launch. Now the instruments on the telescope have been operating in a “safe mode” for more than a week, and it appears that they will remain so for at least another one.
There are plenty of processes that might be easier in lower gravity. So far, the biggest hindrance to developing those processes has been the expense of launching equipment to the low gravity environments of the ISS or other space-based research stations. Testing on the ground would be preferable both for ease of use and much lower cost, but the Earth’s gravity usually puts a stop to that. Some scientists see another way. Using magnetic fields can artificially simulate a zero-gravity environment, and now a team from Florida State University’s (FSU’s) National High Magnetic Field Laboratory has developed a system that can hold a much larger sample than previous iterations.
Frameworks are a valuable tool in science. They give context to sometimes abstract concepts such as “how powerful can an alien civilization be” (Kardashev scale) or “how developed is this technology?” (Technology Readiness Levels). Now, NASA has developed a new scale to help give context to what some consider one of the agency’s most critical missions – the search for extraterrestrial life.
In the Milky Way, the formation rate of stars is about one solar mass every year. About 10 billion years ago, it was ten solar masses every year. What happened?
Not that long ago,, astronomers weren’t sure that exoplanets even existed. Now we know that there are thousands of them and that most stars probably harbour exoplanets. There could be hundreds of billions of exoplanets in the Milky Way, by some estimates. So there’s no reason to think that stars in other galaxies don’t host planets.
It is a pivotal time for astrophysicists, cosmologists, and philosophers alike. In the coming years, next-generation space and ground-based telescopes will come online that will use cutting-edge technology and machine learning to probe the deepest depths of the cosmos. What they find there, with any luck, will allow scientists to address some of the most enduring questions about the origins of life and the Universe itself.
For decades, various physicists have theorized that even the slightest changes in the fundamental laws of nature would make it impossible for life to exist. This idea, also known as the “Fine-Tuned Universe” argument, suggests that the occurrence of life in the Universe is very sensitive to the values of certain fundamental physics. Alter any of these values (as the logic goes), and life would not exist, meaning we must be very fortunate to be here!
What makes a planet a planet? The answer turns out to be rather contentious. The official definition of a planet, as defined by the International Astronomical Union (IAU) is that a planet must satisfy three conditions:
The Ingenuity Mars Helicopter took a short hop flight on October 24, giving the mission team both a sigh of relief and an anticipatory look to future flights. This 14th flight of Ingenuity’s mission was a short 23-second hover, with a peak altitude of 16 feet (5 meters) above ground level, with a small sideways translation of 7 feet (2 meters) to avoid a nearby sand ripple.
Titan has become a center of increasing attention as of late. Discoveries from Cassini have only increased interest in the solar system’s second-largest moon. Liquid on its surface has already prompted one upcoming mission – the Dragonfly drone NASA plans to launch in the mid-2030s. Now a team of dozens of scientists has put their names behind a proposal to ESA for a similar mission. This one is called POSEIDON and would specialize in exploring some of TItan’s methane lakes.
Science fiction author Frank Herbert is renowned for the richly-detailed worlds he created. None of his work is more well-known than “Dune,” which took him six years to complete. Like his other work, Dune is full of detail, including the description of planet Dune, or as the Fremen call it, Arrakis.
There are many types of rocket fuel. Some are more useful on a particular planet. And some can be created by bacteria. A team from Georgia Tech has found a rocket fuel with an interesting mix of those characteristics that might be a focal point of in-situ resource utilization – on Mars.
Blue Origin has certainly stepped up its game of late! After stepping down as the CEO of Amazon, Jeff Bezos has made it his personal mission to take the company he founded in 2000 and turn it into a powerhouse of the commercial space sector. Between some high-profile missions involving the New Shepard – which included passengers like Wally Funk, William Shatner, and even himself and his brother – Bezos has also been outspoken about his long-term vision.
It’s been a long time coming, but NASA’s next moon rocket is just months from liftoff on its first uncrewed test flight. The Space Launch System (SLS) is a super heavy-lift vehicle capable of delivering 95 tons to Low Earth Orbit, but its primary purpose will be to deliver humans to lunar orbit and, eventually, to the lunar surface. SLS has been in development since 2011, and it’s faced a series of delays, but launch day is finally within sight. Earlier this month, the rocket was fully stacked for the first time in the Vehicle Assembly Building at the Kennedy Space Center, and the Orion capsule (the spacecraft’s crew cabin) was attached to the top. The full stack stands an impressive 322 feet tall, just shy of the Saturn V’s 363 feet.
Between the multiple space agencies planning to conduct crewed missions to the lunar surface, the many commercial entities who’ve contracted them to assist them, and proposals for lunar bases, the message of the modern space age is clear: We’re going back to the Moon. And this time, we intend to stay! Just like the efforts of the Apollo Era, this entails several challenges, ones that require “the best of our energies and skills.”
If it weren’t for supernova remnants we wouldn’t have much knowledge of supernovae themselves. If a supernova explosion is the end of a star’s life, then we can also thank forensic astrophysics for much of our knowledge. The massive exploding stars leave behind brilliant and mesmerizing evidence of their catastrophic ends, and much of what we know about supernovae comes from studying the remnants rather than the explosions themselves. Supernova remnants like the Crab Nebula and SN 1604 (Kepler’s Supernova) are some of our most-studied objects.
Holograms are useful for more than interesting-looking baubles in gift shops. Materials scientists have used them for applications from stress/strain gauges to data storage systems. It turns out they would also be useful in making extraordinarily lightweight, flexible mirrors for space telescopes. A new study led by researchers at the Rensselear Polytechnic Institue shows how that might happen.
Auroral activity on Earth varies over time. As the magnetic poles drift, auroras can appear at different latitudes around the globe. Solar activity also affects them, with powerful solar storms pushing the auroras further into mid-latitudes.