Wind the cosmic clock back a few billion years and our Solar System looked much different than it does today. About 4.5 billion years ago, the young Sun shone much like it does now, though it was a little smaller. Instead of being surrounded by planets, it was ensconced in a swirling disk of gas and dust. That disk is called a protoplanetary disk and it’s where the planets eventually formed.
Space News & Blog Articles
Explorers either have the benefit of having maps or the burden of creating them. Similarly, space explorers have been building maps as they go, using all available tools. Those tools might not always be up to the task, but at least something is better than nothing. Now, a new map of an exploration destination has emerged – a map of the river valleys of Titan.
On Oct. 12th, the James Webb Space Telescope (JWST) arrived safely at Port de Pariacabo in French Guiana after spending 16 days traveling between California and South America. Since then, the observatory was transported from California to French Guiana and brought to a cleanroom in the Guyanese Space Center (GSC). Here, crews “unboxed” the observatory from its protective cargo container in preparation for launch – now targetted for Dec. 18th.
As we’re fond of saying here at UT, space exploration is hard. Many things can go wrong when launching thousands of kgs of highly engineered equipment that took years to develop into space. Now, something seems to have gone wrong with NASA’s latest Discovery mission. Lucy, launched successfully by a ULA rocket on October 16th, seems to have a solar panel that didn’t quite “latch.”
When Carl Sagan said, “We are all made of star stuff,” he didn’t just mean we were made up of parts of our own star. Other stars contributed to the material that built our solar system, and some of that “presolar” material is still present in a pristine form inside meteorites. Now, a team led by Dr. Nan Liu at Washington University in St. Louis took a close look at some of the parts of meteorites that formed before the Sun. They held some exciting surprises and answers.
Since the beginning of the Digital Age (ca. the 1970s), theoretical physicists have speculated about the possible connection between information and the physical Universe. Considering that all matter is made up of information that describes the state of a quantum system (aka. quantum information), and genetic information is coded in our DNA, it’s not farfetched at all to think that physical reality can be expressed in terms of data.
Astronomers have known for years that galaxies are cannibalistic. Massive galaxies like our own Milky Way have gained mass by absorbing smaller neighbours.
NASA’s Lucy spacecraft is on its way. The spacecraft was launched into space on Saturday, October 16th on an Atlas 5 rocket. Its primary target is Jupiter’s Trojan asteroids.
The energetic phenomena known as Fast Radio Bursts (FRBs) are one of the greatest cosmic mysteries today. These mysterious flashes of light are visible in the radio wave part of the spectrum and usually last only a few milliseconds before fading away forever. Since the first FRB was observed in 2007, astronomers have looked forward to the day when instruments of sufficient sensitivity would be able to detect them regularly.
Imagine a scenario where we detect an asteroid heading straight for Earth. Imagine that it will arrive in a couple of days, or worse, only a few hours. What could be done to stop it?
Jupiter’s atmosphere has plenty of distinct features, including lightning and the Great Red Spot. But the underlying processes that drive these features are less well understood, as the physics of the gases that make up Jupiter’s atmosphere is complicated. A team of scientists from all over the globe has found a familiar process in all the chaos, though. They think a process that happens here on Earth might be happening on a grander scale at Jupiter.
Recently, astronomers have been finding protoplanetary discs around certain stars. Their discovery has helped kick off a new work in planetary formation theory. But planets aren’t the objects that form from discs of material in space. Moons do too. Now, scientists led by Dr. Tomas Stolker of Leiden University and his team have delved deeper into the characteristics of a “protolunar” disc surrounding a “super Jupiter” exoplanet about 500 light-years away.
The confirmation of gravitational waves back in 2017 continues to unlock whole new worlds of physics but also continues to elicit further questions. The detection of each gravitational wave brings a new challenge – how to find out what caused the event. Sometimes that is harder than it sounds. Now a team led by Alejandro Vigna-Gomez of the University of Copenhagen thinks they found a model of star death that helps to explain some previously inexplicable findings – and points to a galaxy with many more massive neutron stars than previously thought.
The center of the Milky Way is a mysterious place. Astronomers think there’s a supermassive black hole there, though it could be dark matter instead. The region is densely packed with stars, dominated by red giants. And because of all the dust between Earth and the galactic center, we can’t see anything with visible light, ultraviolet light, or low-energy x-rays.
Since the Voyager probes passed through the Jupiter system in 1979, scientists have been intrigued and mystified by its moon Europa. Once the images these probes acquired of the moon’s icy surface returned to Earth, scientists began to speculate about the possibility of a subsurface ocean. Since then, the detection of plume activity and other lines of evidence have bolstered this theory and fed speculation that there could be life beneath Europa’s icy surface.
Vivid green and purple aurora swirled and danced across the entire night sky in Sweden recently. The nighttime light show was captured by an all-sky camera in Kiruna, Sweden, which is part of the European Space Agency’s (ESA) Space Weather Service Network.
According to the most widely accepted theories, the Moon formed about 4.5 billion years ago after a Mars-sized object (Theia) collided with Earth. After the resulting debris accreted to create the Earth-Moon system, the Moon spent many eons cooling down. This meant that a few billion years ago, lakes of lava were flowing across the surface of the Moon, which eventually hardened to form the vast dark patches (lunar maria) that are still there today.
The outer “ice giant” planets, Neptune and Uranus, have plenty of mysteries. One of the biggest is where exactly they got their magnetic fields. They are strong at that, with Neptune’s being twenty-seven times more powerful than Earth’s, while Uranus’ varies between ? and four times Earth’s strength. Chaos rules in these electromagnetic environments, making them exceptionally hard to both understand and model. Now a team of researchers led by Dr. Vitali Prakpenka of the University of Chicago thinks they might have found the underlying cause of both the field’s strength and its randomness – “hot ice.”
The idea of avoiding asteroid impacts has featured prominently in the public’s mind for decades – especially since the release of Deep Impact and Armageddon. But is using a nuclear explosion the best way to deal with potentially hazardous space rocks? Decidedly not. If given enough time, there is a much more effective (and safer) way to dealing with any object on a collision course with Earth – a gravity tractor. Now, Dr. Yohannes Ketema from the University of Minnesota has developed a flight pattern that makes this simplest of all asteroid defense mechanisms that much more effective.
Scientists have long known the fate of our solar system – and likely the fate of Earth itself. In a few billion years, the Sun will run out of fusion fuel and expand to a “red giant” phase, likely swallowing everything in the solar system up to the orbit of Mars. But, some of the planets past that point could survive, like Jupiter and Saturn. Now, scientists have used the Keck Observatory to see a system that looks like what ours will after the Sun’s red giant phase for the very first time.