In the coming decades, multiple space agencies and private companies plan to establish outposts on the Moon and Mars. These outposts will allow for long-duration stays, astrobiological research, and facilitate future Solar System exploration. However, having crews operating far from Earth for extended periods will also present some serious logistical challenges. Given the distances and costs involved, sending resupply missions will be both impractical and expensive. For this reason, relying on local resources to meet mission needs – aka. In-Situ Resource Utilization (ISRU) – is the name of the game.
Space News & Blog Articles
Certain exoplanets pique scientists’ interest more than others. Some of the most interesting are those that lie in the habitable zone of their stars. However, not all of those planets would be similar to Earth – in fact, finding a planet about the size of Earth is already stretching the limits of most exoplanet-hunting telescopes. So the scientific community rejoiced when researchers at the Université de Montréal announced they found an exoplanet in the size range of the Earth. However, it appears to be almost entirely covered in water, making it more similar to a giant version of Europa, the ice-covered moon of Jupiter.
Studying the atmospheres of exoplanets is helpful for several reasons. Sometimes, it helps in understanding their formation. Sometimes, it helps define whether the planet might be habitable. And sometimes, you allow a press officer to write the headline “Stench of a gas giant? Nearby exoplanet reeks of rotten eggs.” That headline was released by John Hopkins University’s (JHU) press department after a study describing the atmosphere of one of the nearest known “hot Jupiters” was recently published in Nature.
For decades, we have seen Mars as a desolate landscape devoid of any signs of life. Attempt to identify ways of growing plants and food on the red planet have focussed on greenhouse like structures to enable plants to survive, that is, until now! A desert moss called ‘Syntrichia caninervis’ has been identified and it can grown in extreme environments like Antarctica and the Mojave Desert. A new study revealed the moss can survive Mars-like environments too including low temperatures, high levels of radiation and drought.
The Netflix movie Don’t Look Up received plenty of accolades for its scarily realistic portrayal of a professor from Michigan State University attempting to warn the world about a civilization-ending asteroid impact. In reality, there are plenty of organizations in the US government and beyond whose job it is to find and avoid those impacts. And the best way to train them to do those jobs is to run scenarios and try to determine what actions would need to be taken. That was the idea behind the fifth Planetary Defense Interagency Tabletop Exercise, held at John Hopkins University Applied Physics Laboratory in April. NASA recently released a preliminary report on the results of the exercise, with a fully detailed one to come in August.
Through the Artemis Program, NASA will return astronauts to the lunar surface for the first time since Apollo 17 landed in 1972. Beyond this historic mission, scheduled for September 2026, NASA plans to establish the infrastructure that will enable annual missions to the Moon, eventually leading to a permanent human presence there. As we addressed in a previous article, this will lead to a huge demand for cargo delivery systems that meet the logistical, scientific, and technical requirements of crews engaged in exploration.
Anytime astronomers talk of mapping the Milky Way I am always reminded how tricky the study of the Universe can be. After all, we live inside the Milky Way and working out what it looks like or mapping it from the inside is not the easiest of missions. It’s one thing to map the visible matter but mapping the dark matter is even harder. Challenges aside, a team of astronomers think they have managed to map the dark matter halo surrounding our Galaxy using Cepheid Variable stars and data from Gaia.
I must confess, I think asteroids and I think of movies like Deep Impact or Armageddon! Scientists think that an asteroid like the ones that appeared in the Hollywood blockbusters struck Mexico 66 million years ago and led to the extinction of the dinosaurs. It now seems they may not have been the only ones that were wiped from our planet. Ammonites are marine mollusks that flourished for 350 million years but they were wiped out too. Some research suggests they were struggling in North America but thriving in other parts of the world.
Moving large amounts of regolith is a requirement for any long-term mission to the Moon or Mars. But so far, humanity has only sent systems capable of moving small amounts of soil at a time – primarily for sample collection. Sending a large, dedicated excavator to perform such work might be cost-prohibitive due to its weight, so why not send a bulldozer attachment to a mobility unit already planned for use on the surface? That was the thought process of an interdisciplinary team of engineers from NASA and the Colorado School of Mines. They came up with the Lunar Attachment Node for Construction and Excavation – or LANCE.
It looks like a distant ring with three sparkly jewels, but the Webb telescope’s (JWST) most recent image is really the view of a distant quasar lensed by a nearby elliptical galaxy. The telescope’s Mid-Infrared Instrument (MIRI) looked at the faint apparition during a study of dark matter and its distribution in the Universe.
NASA has big plans for the Moon. Through the Artemis Program, NASA plans to create a program of “sustained exploration and lunar development.” This will include the creation of the Lunar Gateway, an orbital habitat that will facilitate missions to and from the surface, and the Artemis Base Camp that will allow for extended stays. Through its Commercial Lunar Payload Services (CLPS) program, NASA has contracted with commercial partners like SpaceX and Blue Origin to deliver scientific experiments and crew to the lunar surface.
Wars in space are no longer just science fiction. In fact, Space War I has been raging for more than two years, with no quick end in sight. This isn’t the kind of conflict that involves X-wing fighters or Space Marines. Instead, it’s a battle over how satellites are being used to collect imagery, identify military targets and facilitate communications in the war between Ukraine and Russia.
In the beginning, the Universe was all primordial gas. Somehow, some of it was swept up into supermassive black holes (SMBHs), the gargantuan singularities that reside at the heart of galaxies. The details of how that happened and how SMBHs accumulate mass are some of astrophysics’ biggest questions.
CubeSats are becoming ever more popular, with around 2,400 total launched so far. However, the small size limits their options for fundamental space exploration technologies, including propulsion. They become even more critical when mission planners design missions that require them to travel to other planets or even asteroids. A team from Khalifa University of Science and Technology in Abu Dhabi recently released a review of the different Cubesat propulsion technologies currently available – let’s look at their advantages and disadvantages.
It seems like every month, a new story appears announcing the discovery of thousands of new asteroids. Tracking these small body objects from ground and even space-based telescopes helps follow their overall trajectory. But understanding what they’re made of is much more difficult using such “remote sensing” techniques. To do so, plenty of projects get more up close and personal with the asteroid itself, including one from Dr. Sigrid Elschot and her colleagues from Stanford, which was supported by NASA’s Institute for Advanced Concepts back in 2018. It uses an advanced suite of plasma sensors to detect an asteroid’s surface composition by utilizing a unique phenomenon – meteoroid impacts.
Wherever the JWST looks in space, matter and energy are interacting in spectacular displays. The Webb reveals more detail in these interactions than any other telescope because it can see through dense gas and dust that cloak many objects.
After 100,000 orbits and almost 23 years on Mars, NASA’s Mars Odyssey orbiter has seen a lot. The spacecraft was sent to map ice and study its geology, but along the way, it’s captured more than 1.4 million images of the planet.
There have been many proposals for building structures on the Moon out of lunar regolith. But here’s an idea sure to resonate with creators, mechanical tinkerers, model builders and the kid inside us all.
If the Sun has a stellar neighbourhood, it can be usefully defined as a 20 parsec (65 light-years) sphere centred on our star. Astronomers have been actively cataloguing the stellar population in the neighbourhood for decades, but it hasn’t been easy since many stars are small and dim.