What are the atmospheric compositions of cold brown dwarf stars? This is what a recent study published in The Astronomical Journal hopes to address as an international team of researchers used NASA’s James Webb Space Telescope (JWST) to investigate the coldest known brown dwarf star, WISE J085510.83?071442.5 (WISE 0855). This study holds the potential to help astronomers better understand the compositions of brown dwarf stars, which are also known as “failed stars” since while they form like other stars, they fail to reach the necessary mass to produce nuclear fusion. So, what was the motivation behind using JWST to examine the coldest known brown dwarf star?
Space News & Blog Articles
Life on our planet appeared early in Earth’s history. Surprisingly early, since in its early youth our planet didn’t have much of the chemical ingredients necessary for life to evolve. Since prebiotic chemicals such as sugars and amino acids are known to appear in asteroids and comets, one idea is that Earth was seeded with the building blocks of life by early cometary and asteroid impacts. While this likely played a role, a new study shows that cosmic dust also seeded young Earth, and it may have made all the difference.
The bad news is that Intuitive Machines’ Odysseus lander is tipped on its side after getting tripped up during its touchdown near the south pole of the moon. The good news? The plucky robotic spacecraft is nevertheless able to send back data.
I can remember seeing images of SN1987A as it developed back in 1987. It was the explosion of a star, a supernova in the Large Magellanic Cloud. Over the decades that followed, it was closely monitored in particular the expanding debris cloud. Predictions suggested there may be a neutron star or even a black hole at the core but the resolution of the telescopes was insufficient to pick anything up. Now we have the James Webb Space Telescope and using its more powerful technology, signs of a neutron star have been detected.
On Wednesday, February 21st, at 01:40 p.m. PST (04:40 p.m. EST), an interesting package returned to Earth from space. This was the capsule from the W-1 mission, an orbital platform manufactured by California-based Varda Space Industries, which landed at the Utah Test and Training Range (UTTR). Even more interesting was the payload, which consisted of antiviral drugs grown in the microgravity environment of Low Earth Orbit (LEO). The mission is part of the company’s goal to develop the infrastructure to make LEO more accessible to commercial industries.
The Sun is heading toward solar maximum (which is likely to be about a year away) and as it does, there will be more sunspots, solar flares and coronal mass ejections. Over the last 24 hours there has been three, yes three X-class flares, the first peaking at X1.9, the second 1.7 and the final one a mighty 6.3. Flares of this magnitude caused radio blackouts, disruption to mobile phones and radio transmissions.
As stars in the Milky Way move through space, some of them have an unexpected effect on the Solar System. Over time, one comes closer to the Sun during its orbit in the galaxy. Some of them actually get within a light-year of our star and pass through the Oort Cloud. Such close flybys can affect the orbits of the outer planets and send cometary nuclei on a long inward rush to the Sun.
Can we secure our place in the Solar System? Not in any absolute sense because nature can be very unpredictable. But we can make the effort to safeguard our civilization by cataloguing potentially dangerous asteroids. An upcoming space telescope will help.
If you think about space travel and the means of escaping the confines of the Earth then most people, currently, are likely to think about the new Artemis project and the Space Launch System. That’s not the only new development though, Blue Origin have been working on their New Glenn rocket and finally we have got a glimpse of their new offering. The rocket was finally rolled onto the launch pad at Cape Canaveral for testing to commence and we may even see a launch later this year.
Universe Today has investigated the importance of studying impact craters, planetary surfaces, exoplanets, and astrobiology, and what these disciplines can teach both researchers and the public about finding life beyond Earth. Here, we will discuss the fascinating field of solar physics (also called heliophysics), including why scientists study it, the benefits and challenges of studying it, what it can teach us about finding life beyond Earth, and how upcoming students can pursue studying solar physics. So, why is it so important to study solar physics?
Astronomers have been on the hunt for a new kind of exoplanet in recent years – one especially suited for habitability. They’re called hycean worlds, and they’re characterized by vast liquid water oceans and thick hydrogen-rich atmospheres. The name was coined in 2021 by Cambridge astronomer Nikku Madhusudhan, whose team got a close-up look at one possible hycean world, K2-18b, using the James Webb Space Telescope in 2023. In a newly accepted paper this January, Madhusudhan and coauthor Frances Rigby examined what the internal structure of hycean planets might look like, and what that means for the possibility of finding life within.
Intuitive Machines‘ Odysseus lander made space history today — becoming the first commercial spacecraft to survive a descent to the moon, and the first U.S.-built spacecraft to do so since the Apollo 17 mission in 1972. But it wasn’t a trouble-free landing.
It’s a headline straight out of the movies yet the White House has recently confirmed it believes that Russia is building space-based anti-satellite weapon! There seems to be no conclusive evidence what this might be but one option may be a nuclear bomb that would indiscriminately wipe out satellites within a huge volume of space! Not only would it devastate satellites but would cause more problems down on the surface and create a whole load of space junk.
Supermassive black holes are messy feeders, and when they’re gorging on too much material, they can hurl high-energy jets into the surrounding Universe. Astronomers have found one of the most powerful eruptions ever seen, emanating from a black hole 3.8 billion light-years away. The powerful jets are blowing out cavities in intergalactic space and triggering the formation of a huge chain of star clusters.
The conditions for life throughout the Universe are so plentiful that it seems reasonable to presume there must be extra-terrestrial civilizations in the galaxy. But if that’s true, where are they? The Search for Extra-terrestrial Intelligence (SETI) program and others have long sought to find signals from these civilizations, but so far there has been nothing conclusive. Part of the challenge is that we don’t know what the nature of an alien signal might be. It’s a bit like finding a needle in a haystack when you don’t know what the needle looks like. Fortunately, any alien civilization would still be bound by the same physical laws we are, and we can use that to consider what might be possible. One way to better our odds of finding something would be to focus not on a direct signal from a single world, but the broader echos of an interstellar network of signals.
Space debris is a thing.. It seems whether we explore the Earth or space we leave rubbish in our wake. Thankfully, organisations like Astroscale are trying to combat the problem of debris in space with a new commercial debris inspection demonstration satellite. Named ADRAS-J, the satellite – which is now in orbit – is hunting down an old Japanese upper stage rocket body which was launched in 2009. It will approach to within 30 metres to study the module from every angle and work out how it can be safely de-orbited by a future mission.
For over a century, people have dreamed of the day when humanity (as a species) would venture into space. In recent decades, that dream has moved much closer to realization, thanks to the rise of the commercial space industry (NewSpace), renewed interest in space exploration, and long-term plans to establish habitats in Low Earth Orbit (LEO), on the lunar surface, and Mars. Based on the progression, it is clear that going to space exploration will not be reserved for astronauts and government space agencies for much longer.
Cosmologists are wrestling with an interesting question: how much clumpiness does the Universe have? There are competing but not compatible measurements of cosmic clumpiness and that introduces a “tension” between the differing measurements. It involves the amount and distribution of matter in the Universe. However, dark energy and neutrinos are also in the mix. Now, results from a recent large X-ray survey of galaxy clusters may help “ease the tension”.
Astronomers say there’s a wave rippling through our galactic neighborhood that’s playing a part in the birth and death of stars — and perhaps in Earth’s history as well.
The gigantic galaxies we see in the Universe today, including our own Milky Way galaxy, started out far smaller. Mergers throughout the Universe’s 13.7 billion years gradually assembled today’s massive galaxies. But they may have begun as mere star clusters.
It’s an exciting time in astronomy today, where records are being broken and reset regularly. We are barely two months into 2023, and already new records have been set for the farthest black hole yet observed, the brightest supernova, and the highest-energy gamma rays from our Sun. Most recently, an international team of astronomers using the ESO’s Very Large Telescope in Chile reportedly saw the brightest object ever observed in the Universe: a quasar (J0529-4351) located about 12 billion light years away that has the fastest-growing supermassive black hole (SMBH) at its center.