Black holes are among the most enigmatic and fascinating objects in the universe. They are regions of spacetime where gravity is so strong that nothing, not even light, can escape. Their existence was predicted by Albert Einstein's theory of general relativity, and since then, numerous theories have emerged to explain their properties, formation, and behavior.
Fast radio bursts (FRBs) are some of the most powerful signals in the universe. They can emit as much power in a few milliseconds as our Sun does in several days. Despite their strength, we still don’t have a definitive answer to what causes them. That is partly because, at least for the ones that only happen once, they are really hard to point down. But a new extension to the Canadian Hydrogen Intensity Mapping Experiment (CHIME) might provide the resolution needed to determine where non-repeating FRBs come from - and its first discovery was one of the brightest FRBs of all time, which helped researchers track it with an unprecedented level of precision, as described in a new paper in The Astrophysical Journal Letters.

