By SpaceZE News Publisher on Thursday, 18 May 2023
Category: Spaceflight Now

Live coverage: SpaceX counting down to midnight-hour Starlink launch

Watch our live coverage of the countdown and launch of a SpaceX Falcon 9 rocket on the Starlink 6-3 mission at 12:41 a.m. EDT (0441 UTC) on May 19 from Space Launch Complex 40 at Cape Canaveral Space Force Station, Florida. Follow us on Twitter.

SFN Live



Another Falcon 9 rocket is set for liftoff early Friday from Cape Canaveral with a batch of 22 upgraded, new-generation Starlink internet satellites, the first of two SpaceX missions scheduled for launch in a span of less than nine hours.

The Starlink 6-3 mission is scheduled to launch at 12:41:30 a.m. EDT (0441:30 UTC) from pad 40 at Cape Canaveral Space Force Station, but weather conditions could be iffy. The official forecast predicts a 60% chance of weather conditions violating launch criteria at 12:41 a.m., but the odds improve a few hours later.

If weather conditions or a technical problem prevents launch at the first opportunity, SpaceX has backup launch times available at 1:31 a.m., 2:19 a.m., and 3:09 a.m. EDT. There’s a 40% chance of unfavorable weather at the day’s final launch opportunity.

Like all Starlink launches, the Falcon 9 rocket will release the new batch of internet satellites into an orbit below their final operating altitude. The satellites will then use on-board propulsion to raise their orbits to an altitude of more than 300 miles (500 kilometers).

The Starlink 6-3 mission will continue launching SpaceX’s new Starlink V2 Mini satellite platform fitted with improved phased array antennas with four times the communications capacity of earlier generations of Starlink satellites, known as Version 1.5, to beam internet signals to consumers around the world. Despite their name, the Starlink V2 Mini satellites are nearly times as massive and more than four times larger than the older Starlink V1.5 satellites.

The “Mini” moniker refers to SpaceX’s plans to launch an even larger full-size Starlink V2 satellite design on the company’s huge new Starship rocket. The Starship has nearly 10 times the payload lift capability of a Falcon 9 rocket, with greater volume for satellites, too.

The full-size Starlink V2s will be capable of transmitting signals directly to cell phones. But with the Starship rocket not yet operational following its first full-scale test flight in April, SpaceX began launching second-generation satellites on Falcon 9 rockets and developed the V2 Minis to fit on the company’s existing launch vehicles.

The first group of 21 Starlink V2 Mini satellites launched Feb. 27 on a Falcon 9 rocket, but some of those spacecraft were decommissioned and intentionally steered back into the atmosphere due to technical problems. Elon Musk, SpaceX’s founder and CEO, said the first batch of Starlink V2 Mini satellites were “experiencing some issues, as expected.” SpaceX planned to thoroughly test the satellites before boosting them above the altitude of the International Space Station to their final operating orbit.

Elon Musk, SpaceX’s founder and CEO, tweeted the first group of Starlink V2 Mini satellites were “experiencing some issues, as expected.” SpaceX planned to thoroughly test the satellites before boosting them above the altitude of the International Space Station to their final operating orbit.

SpaceX continued launching older-model Starlink V1.5 satellites on a series of missions in March and April, before resuming deployment of the bigger, more capable Starlink V2 Mini satellites with a Falcon 9 launch April 19. Since then, SpaceX has launched four missions with the older Starlink V1.5 satellites before switching back to the larger V2 Minis with Friday morning’s launch.

A side-by-side comparison of the Starlink V1.5 and the Starlink V2 Mini satellites. Credit: SpaceX / Spaceflight Now

In addition to improved communications capability, the Starlink V2 Mini satellites have more efficient, higher-thrust argon-fueled propulsion systems. Argon is cheaper than the krypton gas SpaceX used to fuel ion engines on the older-generation Starlink V1.5 satellites.

“This means Starlink can provide more bandwidth with increased reliability and connect millions of more people around the world with high-speed internet,” SpaceX said before the first launch of Starlink V2 Mini satellites in February.

Each Starlink V2 Mini satellite weighs about 1,760 pounds (800 kilograms) at launch, nearly three times heavier than the older Starlink satellites. The are also bigger in size, with a spacecraft body more than 13 feet (4.1 meters) wide, filling more of the Falcon 9 rocket’s payload fairing during launch, according to regulatory filings with the Federal Communications Commission.

The larger, heavier satellite platform means a Falcon 9 rocket can only launch around 22 Starlink V2 Mini payloads at a time, compared to more than 50 Starlink V1.5s on a single Falcon 9 launch. The first two Falcon 9 launches with Starlink V2 Mini satellites carried 21 spacecraft, while Friday’s Starlink 6-3 mission will deploy 22 spacecraft, matching or slightly exceeding the record for the heaviest payload SpaceX has ever launched into space.

The two deployable solar panels on each Starlink V2 Mini satellite span about 100 feet (30 meters) tip-to-tip. The previous generation of Starlink V1.5 satellites each have a single solar array wing, with each spacecraft measuring about 36 feet (11 meters) end-to-end once the solar panel is extended.

The enhancements give the Starlink V2 Mini satellites a total surface area of 1,248 square feet, or 116 square meters, more than four times that of a Starlink V1.5 satellite.

The Federal Communications granted SpaceX approval Dec. 1 to launch up to 7,500 of its planned 29,988-spacecraft Starlink Gen2 constellation, which will spread out into slightly different orbits than the original Starlink fleet. The regulatory agency deferred a decision on the remaining satellites SpaceX proposed for Gen2.

Specifically, the FCC granted SpaceX authority to launch the initial block of 7,500 Starlink Gen2 satellites into orbits at 525, 530, and 535 kilometers, with inclinations of 53, 43, and 33 degrees, respectively, using Ku-band and Ka-band frequencies. SpaceX started launching older-design Starlink V1.5 satellites into the orbits approved for the Gen2 constellation in December.

The FCC previously authorized SpaceX to launch and operate roughly 4,400 first-generation Ka-band and Ku-band Starlink spacecraft that SpaceX has been launching since 2019. SpaceX is nearing completion with launches to populate the first-generation Starlink network.

With the launch Friday, SpaceX will have sent 464 Starlink Gen2 satellites into orbit, including Starlink V1.5 and Starlink V2 Mini spacecraft. After this mission, SpaceX will have deployed 4,469 Starlinks satellites in all, including test units no longer in service. More than 4,100 Starlink satellites are currently in orbit, according to McDowell.

File photo of a Falcon 9 rocket standing on pad 40 at Cape Canaveral Space Force Station before a previous launch. Credit: Stephen Clark / Spaceflight Now

The Gen2 satellites could improve Starlink coverage over lower latitude regions, and help alleviate pressure on the network from growing consumer uptake. SpaceX says the network has more than 1 million active subscribers, mostly households in areas where conventional fiber connectivity is unavailable, unreliable, or expensive.

During the overnight countdown beginning late Thursday night, SpaceX’s launch team will be stationed inside a launch control center just south of Cape Canaveral Space Force Station to monitor key systems on the Falcon 9 rocket and at the launch pad. SpaceX will begin loading super-chilled, densified kerosene and liquid oxygen propellants into the Falcon 9 vehicle at T-minus 35 minutes.

Helium pressurant will also flow into the rocket in the last half-hour of the countdown. In the final seven minutes before liftoff, the Falcon 9’s Merlin main engines will be thermally conditioned for flight through a procedure known as “chilldown.” The Falcon 9’s guidance and range safety systems will also be configured for launch.

After liftoff, the Falcon 9 rocket will vector its 1.7 million pounds of thrust — produced by nine Merlin engines — to steer southeast over the Atlantic Ocean. The Falcon 9 rocket will exceed the speed of sound in about one minute, then shut down its nine main engines two-and-a-half minutes after liftoff. The booster stage will separate from the Falcon 9’s upper stage, then fire pulses from cold gas control thrusters and extend titanium grid fins to help steer the vehicle back into the atmosphere.

Two braking burns will slow the rocket for landing on the drone ship “A Shortfall of Gravitas” around 400 miles (640 kilometers) downrange approximately eight-and-a-half minutes after liftoff. The reusable booster, designated B1076 in SpaceX’s inventory, will fly on its fifth trip to space Friday.

The Falcon 9’s reusable payload fairing will jettison during the second stage burn. A recovery ship is also on station in the Atlantic to retrieve the two halves of the nose cone after they splash down under parachutes.

Landing of the first stage on Firday’s mission will occur just as the Falcon 9’s second stage engine cuts off to deliver the Starlink satellites into a preliminary parking orbit. Another upper stage burn 54 minutes into the mission will reshape the orbit ahead of payload separation.

Separation of the 22 Starlink spacecraft, built by SpaceX in Redmond, Washington, from the Falcon 9 rocket is expected about 65 minutes after liftoff.

The Falcon 9’s guidance computer aims to deploy the satellites into an orbit at an inclination of 43 degrees to the equator, with an altitude ranging between 195 miles and 200 miles (314-by-323 kilometers). After separating from the rocket, the 22 Starlink spacecraft will unfurl solar arrays and run through automated activation steps, then use their argon-fueled ion engines to maneuver into their operational orbit.

ROCKET: Falcon 9 (B1076.5)

PAYLOAD: 22 Starlink V2 Mini satellites (Starlink 6-3)

LAUNCH SITE: SLC-40, Cape Canaveral Space Force Station, Florida

LAUNCH DATE: May 19, 2023

LAUNCH TIME: 12:41:30 a.m. EDT (0441:30 GMT)

WEATHER FORECAST: 40-60% chance of acceptable weather; Low risk of upper level winds; Low risk of unfavorable conditions for booster recovery

BOOSTER RECOVERY: “A Shortfall of Gravitas” drone ship northeast of the Bahamas

LAUNCH AZIMUTH: Southeast

TARGET ORBIT: 195 miles by 200 miles (314 kilometers by 323 kilometers), 43.0 degrees inclination

LAUNCH TIMELINE:

T+00:00: Liftoff T+01:12: Maximum aerodynamic pressure (Max-Q) T+02:26: First stage main engine cutoff (MECO) T+02:30: Stage separation T+02:37: Second stage engine ignition (SES 1) T+03:06: Fairing jettison T+06:10: First stage entry burn ignition (three engines) T+06:30: First stage entry burn cutoff T+08:00: First stage landing burn ignition (one engine) T+08:23: First stage landing T+08:39: Second stage engine cutoff (SECO 1) T+54:16: Second stage engine ignition (SES 2) T+54:18: Second stage engine cutoff (SECO 2) T+1:04:56: Starlink satellite separation

MISSION STATS:

224th launch of a Falcon 9 rocket since 2010 235th launch of Falcon rocket family since 2006 5th launch of Falcon 9 booster B1076 166th flight of a reused Falcon booster 190th SpaceX launch from Florida’s Space Coast 125th Falcon 9 launch from pad 40 180th launch overall from pad 40 85th Falcon 9 launch primarily dedicated to Starlink network 30th Falcon 9 launch of 2023 33rd launch by SpaceX in 2023 24th orbital launch attempt based out of Cape Canaveral in 2023

This email address is being protected from spambots. You need JavaScript enabled to view it. the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Original link