The Hubble Space Telescope is seen after its release from the space shuttle Columbia during a 2002 servicing mission. Credit: NASA
Trouble with one of the Hubble Space Telescope’s three remaining gyroscopes, critical for aiming and locking onto targets, has prompted mission managers to switch to a backup control mode that will limit some observations but keep the iconic observatory running well into the 2030s, officials said Tuesday.
“We still believe there’s very high reliability and likelihood that we can operate Hubble very successfully, doing groundbreaking science, through the rest of the 20s and into the 2030s,” Patrick Crouse, the Hubble project manager, told reporters during an afternoon teleconference.
At the same time, Mark Clampin, director of astrophysics at NASA Headquarters, said the agency had ruled out, at least for now, a proposed commercial mission to boost Hubble to a higher altitude using a SpaceX Crew Dragon spacecraft. The flight was suggested by SpaceX and Crew Dragon veteran Jared Isaacman as a way to extend Hubble’s lifetime.
By boosting the telescope to a higher altitude, the subtle effects of “drag” in the extreme outer atmosphere, which act to slowly but surely pull spacecraft back to Earth, could be reduced. Isaacman, a billionaire who chartered the first fully commercial flight to low-Earth orbit in 2021, is in training to lead three more SpaceX “Polaris” missions, including a flight this summer in which he plans to become the first private citizen to stand in an open hatch and float, if not walk, in space.
But project managers said Tuesday Hubble is in no danger of falling back to Earth anytime soon. The latest calculations show the observatory will remain in orbit until at least 2035, allowing time to consider possible options, if warranted, down the road.
“After exploring the current commercial capabilities, we are not going to pursue a reboost right now,” Clampin said. “We greatly appreciate the in-depth analysis conducted by the NASA and (the SpaceX-Isaacman) program and our other potential partners, and it’s certainly given us better insight into the considerations for developing a future commercial reboost mission.
“But our assessment also raised a number of considerations, including potential risks such as premature loss of science and some technology challenges. So while the reboost is an option for the future, we believe we need to do some additional work to determine whether the long-term science return will outweigh the short-term science risk.”