When the largest stars in the Universe run out of fuel, they detonate as supernovae, collapsing inward and leaving behind a neutron star, black hole, or just wholly vaporizing. What’s happening inside the unfolding explosion is difficult to understand, and especially so for so-called exotic supernovae, the rarest and brightest types of stellar explosions.
Space News & Blog Articles
If you take a Universe worth of hydrogen and helium, and let it stew for about 13 billion years, you get us. We are the descendants of the primeval elements. We are the cast-off dust of the first stars, and many generations of stars after that. So our search for the first stars of the cosmos is a search for our own history. While we haven’t captured the light of those first stars, some of their direct children may be in our own galaxy.
At the heart of large galaxies like our Milky Way, there resides a supermassive black hole (SMBH.) These behemoths draw stars, gas, and dust toward them with their irresistible gravitational pull. When they consume this material, there’s a bright flare of energy, the brightest of which are quasars.
We can’t understand nature without understanding its range. That’s apparent in exoplanet science and in our theories of planetary formation. Nature’s outliers and oddballs put pressure on our models and motivate scientists to dig deeper.
In 1960, legendary physicist Freeman Dyson published his seminal paper “Search for Artificial Stellar Sources of Infrared Radiation,” wherein he proposed that there could be extraterrestrial civilizations so advanced that they could build megastructures large enough to enclose their parent star. He also indicated that these “Dyson Spheres,” as they came to be known, could be detected based on the “waste heat” they emitted at mid-infrared wavelengths. To this day, infrared signatures are considered a viable technosignature in the Search for Extraterrestrial Intelligence (SETI).
About three billion years ago, rushing water on Mars carried mud and boulders down a steep slope and deposited them into a vast fan-shaped debris pile. NASA’s Curiosity Rover has been trying to reach a ridge overlooking the region, and now finally, the rover has reached this vantage point after three years of climbing. NASA released a 360-degree view image of the region, showing the jumble of rocks strewn about by the rushing water. Now, Curiosity is reaching out to touch and study them.
You’ve heard this story before. An advanced alien race comes to Earth. They offer peace and prosperity, but they hold a dark secret. One that could destroy humanity. That dark secret has varied over the years, from stealing our water, books on culinary advice, or communism, but the result is always the same. First contact with advanced extraterrestrials goes very badly for us. But in reality, how bad could it be? That’s the question a new study examines using game theory and Hobbesian philosophy.
The very early Universe was a busy place, particularly when stars and galaxies began to form. Astronomers eagerly search for the farthest galaxy—that elusive “first” one to form. JWST is part of that hunt through its Cosmic Evolution Early Release Survey (CEERS).
For most of the history of astronomy, all we could see were stars. We could see them individually, in clusters, in nebulae, and in fuzzy blobs that we thought were clumps of stars but were actually galaxies. The thing is, most of what’s out there is much harder to see than stars and galaxies. It’s gas.
Galaxies come in a range of shapes, from elegant spirals to egg-shaped ellipticals. We often categorize galaxies by their shape, which was traditionally done based on what we could observe in the visual spectrum. But as we expanded astronomy into radio, infrared, ultraviolet, and x-ray light, learned that often galaxies have structures invisible to our eyes. Take, for example, an odd type of galaxy known as polar ring galaxies (PRGs).
Engineers working with the European Space Agency have developed a new thruster design smaller than the tip of your finger. Despite its small size, this mini-thruster designed for CubeSats appears to be highly efficient without the use of toxic chemicals.
Just when cosmologists have a workable theory for when and how galaxy collisions happened in the early Universe, something challenges it. In this case, the challenger is a collision of two massive galaxy clusters that combined to form a gigantic galaxy cluster.
The race is on to discover truly habitable Earth-like worlds. While we are starting to observe the atmospheres of large potentially habitable planets such as Hycean worlds with the telescopes we currently have, the most significant breakthroughs will likely come with the development of advanced specialized telescopes. These new designs will likely use a starshade to hide the glare of a star and allow us to directly observe its exoplanets. But will that be enough to study distant terrestrial planets?
On Earth, continents are likely necessary to support life. Continents ‘float’ on top of the Earth’s viscous mantle, and heat from the planet’s core keeps the mantle from solidifying and locking the continents into place.
When NASA astronauts return to the surface of the Moon in the Artemis III mission, the plan is to use a modified SpaceX Starship as their lunar lander. NASA announced last week that SpaceX has now demonstrated an important capability of the vacuum-optimized Raptor engine that will be used for the lander: an extreme cold start.
A recent study published in The Planetary Science Journal examines how helicopters equipped with a magnetometer could be used to conduct magnetic field investigations within the crust of Mars, providing important insights into the present characteristics and early evolution of the Red Planet. This study comes as NASA’s Ingenuity helicopter continues breaking records and making history as the first powered aerial explorer on another planet, along with the recently expired NASA InSight lander using its own magnetometer to measure the crustal magnetic field.
One of the miracles of modern astronomy is the ability to ‘see’ wavelengths of light that human eyes can’t. Last week, astronomers put that superpower to good use and released five new images showcasing the universe in every wavelength from X-ray to infrared.
It’s difficult to determine the shape of our galaxy. So difficult that only in the last century did we learn that the Milky Way is just one galaxy among billions. So it’s not surprising that despite all our modern telescopes and spacecraft we are still mapping the shape of our galaxy. And one of the more interesting discoveries is that the Milky Way is warped. One explanation for this is that our galaxy has undergone collisions, but a new study argues that it’s caused by dark matter.