Despite decades of large-scale optical surveys, there are still mysteries about the Milky Way galaxy that astronomers are eager to resolve. This is particularly true of its internal structure and the core region, which is difficult to survey due to clouds of gas and dust in the interstellar medium (ISM). This material absorbs visible light, making fainter objects difficult to see in optical wavelengths. Luckily, advances in infrared astronomy have enabled surveys of the Milky Way that have revealed things that would otherwise remain invisible to us.
Space News & Blog Articles
The general consensus is that Theia crashed into Earth billions of years ago and led to the formation of the Moon. The story doesn’t end there though since there are a few lines of evidence to suggest the Moon could have been captured by the gravitational pull of the Earth instead. The orbit of the Moon is one such observation that leads to a different conclusion for it’s in-line with the plane of the ecliptic rather than the Earth’s equator. A team of researchers have suggested capture theory was the Moon’s origin.
The hits just keep on coming from the Mars Perseverance rover. It’s exploring Jezero Crater on the Red Planet, looking for evidence of microbial life in the planet’s ancient (or even recent) past. Recently it spotted a very strange-looking rock with black and white stripes. Its appearance and location sparked a lot of questions. Perseverance team members have named it “Freya Castle.”
Why is it important to search for exoplanets in triple star systems and how many can we find there? This is what a recent study accepted by Astrophysics & Space Science hopes to address as a pair of researchers from the University of Texas at Arlington investigated the statistical likelihood of triple star systems hosting exoplanets. This study holds the potential to help researchers better understand the formation and evolution of triple star systems and whether they are suitable to find life as we know it.
In about five billion years, our Sun will exit its main sequence phase and transition to its red giant phase. At this point, the Sun will expand and consume the planets of the inner Solar System, including Mercury and Venus. What will become of Earth when this happens has been the subject of debate for many decades. But with the recent explosion in exoplanet discoveries, 5,759 confirmed in 4,305 systems so far, astronomers hope to learn more about how planets fare as their stars near the end of their life cycle.
I’ve often stated that planets come in a wide range of sizes but rarely do I find myself stating they come in a wide range of shapes too! The discovery of WASP-107b is a case in point since this planet is the size of Jupiter but only a tenth of its mass. But there’s more… Using the James Webb Space Telescope a team of astronomers have accurately identified that the planet has an east-west asymmetry in its atmosphere, in other words, it’s lopsided. It is tidally locked to the star and on one side, the atmosphere seems to be inflated compared to the other.
Ages ago in its youth, Mars appeared much like Earth. It was a warm planet with lakes, rivers, and vast seas. It had a thick atmosphere with clouds and rain. One major difference is that the atmosphere was rich with carbon dioxide instead of oxygen. Then about 3.5 billion years ago much of the atmosphere disappeared, and we haven’t understood how. A new study in Science Advances suggests that the waters of Mars may have been the key, and much of the ancient atmosphere may be locked in the surface of the red planet.
We have known that water ice exists on the Moon since 1998. These large deposits are found in the permanently shadowed craters around the polar region. The challenge is how to get it since shadowed craters are not the best place for solar powered vehicles to operate. A team of engineers have identified a design for an ice-mining vehicle powered by americium-241. With a half-life of 432 years, this element is an ideal power source for a vehicle to operate in the dark for several decades.
The reason we call dark matter dark isn’t because it’s some shadowy material. It’s because dark matter doesn’t interact with light. The difference is subtle, but important. Regular matter can be dark because it absorbs light. It’s why, for example, we can see the shadow of molecular clouds against the scattered stars of the Milky Way. This is possible because light and matter have a way to connect. Light is an electromagnetic wave, and atoms contain electrically charged electrons and protons, so matter can emit, absorb and scatter light. Dark matter isn’t electrically charged. It has no way to connect with light, and so when light and dark matter meet up they simply pass through each other.
Venus is often described as a hellscape. The surface temperature breaches the melting point of lead, and though its atmosphere is dominated by carbon dioxide, it contains enough sulfuric acid to satisfy the comparison with Hades.
The most likely way we will discover life on a distant exoplanet is by discovering a biosignature. This can be done by looking at the atmospheric spectra of a world to discover the spectral pattern of a molecule that can only be created through biological processes. While it sounds straightforward it isn’t. The presence of simple molecules such as water and oxygen don’t prove life exists on a planet. It’s true that Earth’s atmosphere is oxygen rich thanks to life, but geological activity can also produce large quantities of oxygen. And as a new study shows, some molecules we’ve long thought to be biological in origin may not be.
It’s no secret that spending extended periods in space takes a toll on the human body. For years, NASA and other space agencies have been researching the effects of microgravity on humans, animals, and plants aboard the International Space Station (ISS). So far, the research has shown that being in space for long periods leads to muscle atrophy, bone density loss, changes in vision, gene expression, and psychological issues. Knowing these effects and how to mitigate them is essential given our future space exploration goals, which include long-duration missions to the Moon, Mars, and beyond.
When a massive star explodes as a supernova, it does more than release an extraordinary amount of energy. Supernovae explosions are responsible for creating some of the heavy elements, including iron, which is blasted out into space by the explosion. On Earth, there are two accumulations of the iron isotope Fe60 in sea-floor sediments that scientists trace back about two or three million years ago and about five to six million years ago.
Researchers have developed a set of hexagon-shaped robotic components that can be snapped together into larger and larger structures. Each one of the component hexagons is made of rigid plates that serve as its exoskeleton. Driven by electricity, the plates can change their shape, shifting from long and narrow to wide and flat at high speed. The combined structures are capable of jumping four times their own body height, then can shape-shift to roll extremely fast, or use multimodal actuation to crawl through confined spaces.
On June 6th, 2024, the fourth orbital test flight of the Starship successfully lifted off at 07:50 a.m. CT (08:50 a.m. EDT; 06:50 PDT) from SpaceX’s Starbase in Texas. This test was the first time the Starship (SN29) and Super Heavy (BN11) prototypes reentered Earth’s atmosphere and landed successfully. While the SN29 conducted a powered vertical landing before splashing down in the Indian Ocean, the BN11 executed a similar powered landing before splashing down in the Gulf of Mexico. In a recent tweet, Elon Musk shared a photo of the BN11 booster being pulled out of the sea.
Earth’s last half-billion years were action-packed. During that time, the climate underwent many changes. There have been changes in ocean levels and ice sheets, changes in the atmosphere’s composition, changes in ocean chemistry, and ongoing biological evolution punctuated with extinction events.
Noctilucent clouds were once thought to be a fairly modern phenomenon. A team of researcher have recently calculated that Earth and the entire Solar System may well have passed through two dense interstellar clouds causing global noctilucent clouds that may have driven an ice age. The event is thought to have happened 7 million years ago and would have compressed the heliosphere, exposing Earth to the interstellar medium.
An atlas doesn’t seem to be an essential item in cars these days but think about them and most people will think about distances. An atlas of the stars not only covers distances but must also take into account time too. The Andromeda galaxy for example is so far away that its light takes 2.5 million years to reach us. A team of researchers have now built a catalogue that contains information on millions of galaxies including their distance and looks back in time up to 10 billion years!
If there really are advanced alien civilizations out there, you’d think they’d be easy to find. A truly powerful alien race would stride like gods among the cosmos, creating star-sized or galaxy-sized feats of engineering. So rather than analyzing exoplanet spectra or listening for faint radio messages, why not look for the remnants of celestial builds, something too large and unusual to occur naturally?
Solar flares are a fascinating thing and have a profound effect on what astronomers refer to as “space weather.” These events vary with the Sun’s 11-year solar cycle, releasing immense amounts of radiation across the electromagnetic spectrum (from extreme ultraviolet to X-rays) into space. The effects of flares have been observed since time immemorial, which include aurorae at high latitudes (Aurora Borealis and Australis), but have only been the subject of study and prediction for about a century and a half. Still, there is much that remains unknown about these dramatic events.

