Aboard the International Space Station (ISS), astronauts and cosmonauts from many nations are performing vital research that will allow humans to live and work in space. For more than 20 years, the ISS has been a unique platform for conducting microgravity, biology, agriculture, and communications experiments. This includes the ISS broadband internet service, which transmits information at a rate of 600 megabits per second (Mbps) – ten times the global average for internet speeds!
Space News & Blog Articles
There’s an unusual object near the Milky Way’s heart that astronomers call “The Brick.” It’s a massive cloud of gas called an infrared dark cloud (IDC). The Brick is dense and turbulent like others of its type, but for some reason, it shows few signs of star formation.
Life on Earth is a glorious dance of data. From the songs of backyard birds to the chemical exchanges of forest trees, the exchange of information between living things is an essential part of its existence and evolution. Humans, too, are a part of that dance, with friendship chats over morning coffee, bold headlines in newspapers, and TikTok videos of teenagers. Right now human data is just one part of Earth’s living data exchange, but it could soon become the overwhelming dominant part. If the same is true for all advanced civilizations, it could impact our search for alien life.
Hydrogen is the most abundant element in the Universe. By far. More than 90% of the atoms in the Universe are hydrogen. Ten times the number of helium atoms, and a hundred times more than all other elements combined. It’s everywhere, from the water in our oceans to the earliest regions of the Cosmic Dawn. Fortunately for astronomers, all this neutral hydrogen can emit a faint emission line of radio light.
Blazars occupy an intriguing spot in the cosmic zoo. They’re bright active galactic nuclei (AGN) that blast out cosmic rays, are bright in radio emission, and sport huge jets of material traveling in our direction at nearly the speed of light. Their jets look curvy and snaky. Astronomers have questions.
Our best understanding of the Universe is rooted in a cosmological model known as LCDM. The CDM stands for Cold Dark Matter, where most of the matter in the universe isn’t stars and planets, but a strange form of matter that is dark and nearly invisible. The L, or Lambda, represents dark energy. It is the symbol used in the equations of general relativity to describe the Hubble parameter, or the rate of cosmic expansion. Although the LCDM model matches our observations incredibly well, it isn’t perfect. And the more data we gather on the early Universe, the less perfect it seems to be.
Pulsars are the lighthouses of the universe. These rotating dead stars shoot twin jets of radiation from their poles, usually with a predictable rhythm. But sometimes pulsars behave strangely, and one pulsar in particular has had astronomers scratching their heads for years. It’s called PSR J1023+0038, and a decade ago, it shut off its jets and began oscillating between two brightness levels in an unpredictable pattern. Now, scientists think they understand why: it is busy eating a neighboring star.
In November of 1572, Tycho Brahe noticed a new star in the constellation Cassiopeia. It was the first supernova to be observed in detail by Western astronomers and became known as Tycho’s Supernova. Earlier supernovae had been observed by Chinese and Japanese astronomers, but Tycho’s observations demonstrated to the Catholic world that the stars were not constant and unchanging as Aristotle presumed. Just three decades later, in 1604, Johannes Kepler watched a supernova in the constellation Ophiuchus brighten and fade. There have been no observed supernovae in the Milky Way since then.
For generations, humans have dreamed, speculated, and theorized about the possibility of journeying to distant stars, finding habitable planets around them, and settling down. In time, the children of these bold adventurers would create a new civilization and perhaps even meet the children of Earth. People could eventually journey from one world to another, cultures would mix, and trade and exchanges would become a regular feature. The potential for growth that would come from these exchanges – intellectually, socially, politically, technologically, and economically – would be immeasurable.
Millisecond pulsars are amazing astronomical tools. They are fast-rotating neutron stars that sweep beams of radio energy from their magnetic poles, and when they are aligned just right we see them as rapidly flashing radio beacons. They flash with such regularity that we can treat them as cosmic clocks. Any change in their motion can be measured with extreme precision. Astronomers have used millisecond pulsars to measure their orbital decay due to gravitational waves and to observe the background gravitational rumblings of the universe. They have even been proposed as a method of celestial navigation. They may soon also be able to test the most fundamental nature of gravity.
Poor Russia. They can’t seem to get much right. Their most recent failure is their Luna 25 spacecraft. It was supposed to land near the Moon’s south pole but instead crashed into the surface on August 19th.
India’s Chandrayaan-3 lunar lander and rover are quickly checking all the boxes of planned tasks for the mission. Time is short, as the duo are expected to last just 14 days on the Moon’s surface, or one lunar day, the amount of time the solar-powered equipment is built to last. Therefore, we likely only have until about September 6 or 7 to follow any action. But what a joy to watch the updates coming in from ISRO, the Indian Space Resource Organization.
Imagine we detect an interstellar object entering our Solar System. At first, astronomers think it’s just another natural interloper like Oumuamua or comet Borisov. We’re warming up to the idea of visitors from other parts of the galaxy, though they’ve been inanimate so far.
Yesterday I presented a rather pessimistic view about our chances of finding evidence of alien civilizations. That work focused on detecting physical structures on an alien planet, which would take an optical telescope array the size of Saturn’s orbit. Today I’ll talk about a more optimistic view, one which focuses not on physical structures, but the fingerprint of molecules in an alien atmosphere. It’s a task that is not only much easier, it’s something we could do now using the James Webb Space Telescope (JWST).
A recent study published in The Astrophysical Journal Letters examines a rare alloy molecule known as chromium hydride (CrH) and its first-time confirmation on exoplanet, WASP-31 b. Traditionally, CrH is only found in large quantities between 1,200 to 2,000 degrees Kelvin (926.85 to 1,726.85 degrees Celsius/1700 to 3,140 degrees Fahrenheit). Therefore, astronomers like Dr. Laura Flagg in the Department of Astronomy and Carl Sagan Institute at Cornell University refer to CrH as a “thermometer for stars”, as CrH is traditionally used to ascertain the temperature of cool stars and brown dwarfs.
The Pentagon has opened up a new portal on the internet for professionals to submit reports about UFOs — now officially known as unidentified anomalous phenomena, or UAPs — and for the rest of us to find out about the reports that have been released.
All supernovae are exploding stars. But the nature of a supernova explosion varies quite a bit. One type, named Type 1a supernovae, involves a binary star where one of the pair is a white dwarf. And while supernovae of all types usually involve a single explosion, astronomers have found something that breaks that mould: A Type 1a supernova that may have detonated twice.
There’s an odd exoplanet out there posing a challenge to planetary scientists. It’s a hot Neptune denser than steel. The big question is: how did it form?
The last place to look for windstorms is on the Moon. Yet, it has swirls on its surface that look like the wind put them there. Since there’s no atmosphere on the Moon, planetary scientists had to look for another cause. It turns out there’s a connection to local magnetic anomalies and an interplay with lunar topography.