Two of the most important telescopes being constructed at the moment are Vera C. Rubin and Nancy Grace Roman. Each has the capability of transforming our understanding of the universe, but as a recent paper on the arxiv shows, they will be even more transformative when they work together.
Space News & Blog Articles
It wasn’t long after the Big Bang that early galaxies began changing the Universe. Less than a billion years later, they had already put on a lot of weight. In particular, their central supermassive black holes were behemoths. New images from JWST show two massive galaxies as they appeared less than a billion years after the universe began.
In the near future, NASA and other space agencies plan to send crews beyond Low Earth Orbit (LEO) to perform long-duration missions on the Moon and Mars. To meet this challenge, NASA is developing life support systems that will sustain crew members without the need for resupply missions from Earth. These systems must be regenerative and closed-loop in nature, meaning they will recycle consumables like food, air, and water without zero waste. Currently, crews aboard the International Space Station (ISS) rely on an Environmental Control and Life Support System (ECLSS) to meet their needs.
We’ve become familiar with LIGO/VIRGO’s detections of colliding black holes and neutron stars that create gravitational waves, or ripples in the fabric of space-time. However, the mergers between supermassive black holes – billions of times the mass of the Sun — generate gravitational waves too long to register with these instruments.
Engineers at NASA’s Jet Propulsion Laboratory (NASA-JPL) are busy keeping the Perseverance rover and Ingenuity helicopter functioning in Jezero Crater on Mars while these robotic explorers continue the search for ancient microbial life on the Red Planet. But some of those same engineers have also been busy working with LEGO designers on new one-tenth-scale LEGO Technic buildable models of these very same robotic explorers with the goal of inspiring the next generation of NASA scientists and engineers.
We say it all the time here at UT – getting to space is hard. It’s even more hard to do new and interesting things in space. And when projects get hard, that usually means they cost more money. That is certainly the case for one of the most anticipated missions on NASA’s current docket – the Mars Sample Return (MSR) mission. And it’s not looking like it’s going to get any easier anytime soon.
In exoplanetology, the ring around the star is often called the “Goldilocks zone,” in reference to the 19th-century fairy tale Goldilocks and the Three Bears. In that story, Goldilocks encounters sets of three objects that are either too extreme for her liking or just right. In the case of a bowl of porridge, the three are too hot, too cold, and just right, hence the analogy to an exoplanet’s position around its star. If it’s too close to its parent star, the planet is too hot, and liquid water, the necessary ingredient for life, won’t exist. If it’s too far, the planet is too cold, and the only water on its surface will be ice. But even the “just right” category has some wiggle room. Many planetary scientists consider Venus to be on the inner edge of our star’s “just right” habitable zone. So why did it end up with such a different fate than our pale blue dot? A team of researchers, led by Lisa Kaltenegger at Cornell, think they have found a way to answer that question – by turning the world’s most powerful space telescope towards a star about 100 light years away and directly observing an exoplanet’s atmosphere.
A stellar nursery sounds like a placid place where baby stars go about their business undisturbed. But, of course, a stellar nursery is nothing like that. (Babies are noisy and cry a lot.) They’re dynamic places where powerful elemental forces rage mightily and bend the surroundings to their will. And this one, even though its name is the drowsy-sounding Smiling Cat Nebula, is no exception.
Remember how a new car smells? It’s a chemical signature of all the materials used to make the car’s interior. What if you could use chemical signatures to learn about newborn planets?
Since the 1990s, thanks to observations by the venerable Hubble Space Telescope (HST), astronomers have contemplated the mystery of cosmic expansion. While scientists have known about this since the late-1920s and early-30s, images acquired by Hubble‘s Ultra Deep Fields campaign revealed that the expansion has been accelerating for the past six billion years! This led scientists to reconsider Einstein’s theory that there is an unknown force in the Universe that “holds back gravity,” which he named the Cosmological Constant. To astronomers and cosmologists today, this force is known as “Dark Energy.”
Our understanding of galaxies is rooted in the fact that we can see so many of them. Some, such as the Andromeda and Pinwheel galaxies are fairly close, and others are more distant, but all of them give a unique view. Because of this, we can see how the various types of galaxies appear from different points of view, from face-on to edge-on and all angles in between. But there is one galaxy that’s a bit harder to map out, and that’s our own. Because we are in the galactic plane of the Milky Way, it can be difficult to create an accurate bird’s-eye view of our home galaxy. That’s where a recent study in Nature Astronomy comes in.
A professor from Northumbria University in the North East region of England has been granted telescope time with NASA’s James Webb Space Telescope (JWST) later this year to study Jupiter’s upper atmosphere, also known as its ionosphere. Being granted such access to JWST is extremely competitive which makes getting access to use its powerful instruments to study the cosmos a very high honor.
Almost anywhere you go on the internet, it seems nearly impossible to escape articles on AI. Even here at UT, we’ve published several. Typically they focus on how a specific research group leveraged the technology to make sense of reams of data. But that sort of pattern recognition isn’t all that AI is good for. In fact, it’s becoming pretty capable of abstract thought. And one place where abstract thought can be helpful is in developing new scientific theories. With that thought in mind, a team of researchers from ESA, Columbia, and the Australian National University (ANU) utilized an AI to come up with scientific hypotheses in astronomy.
The search for life is an incredibly evocative driver of cosmic exploration. It captures our imagination to think that there might be living things out there somewhere else. That’s one reason why we point our eyes—and telescopes—to the stars.
While the European Space Agency isn’t planning to build their own spacesuits anytime soon, they want to be ready. ESA recently had the Space Suit Design Competition, allowing the public to propose designs for future European extra-vehicular activity (EVA) suits.
If we want to understand the Universe, we have to start with its size. Ancient people had no idea there was a Universe the way we understand it now, and no idea of its size. They thought there was the Earth, with everything else rotating around it. It was the only conclusion within reach for a long time.
Reusable launch vehicles have been a boon for the commercial space industry. By recovering and refurbishing the first stages of rockets, launch providers have dramatically reduced the cost of sending payloads and even crew to space. Beyond first-stage boosters, there are efforts to make rockets entirely reusable, from second stages to payload fairings. There are currently multiple strategies for booster recovery, including mid-air retrieval using helicopters and nets. Still, the favored method involves boosters returning to a landing pad under their own power (the boost-back and landing maneuver).
One of the amazing benefits of modern astronomy is the wealth of astronomical images it gives us. From Hubble to Webb, new images appear online almost every day. They are powerful and beautiful, and so bountiful they are easy to take for granted. But those images aren’t for everyone. Whether you are visually impaired, color blind, or best process information auditorily or kinesthetically, astronomical images can be extremely limiting. Because of this, NASA’s Universe of Learning project is exploring how astronomy can be conveyed in multi-sensory ways.
NASA recently welcomed the newest signatories of the Artemis Accords as Spain, Ecuador, and India became the 25th, 26th, and 27th countries, respectively, to sign on to the historic agreement for cooperation and partnership for space exploration, specifically pertaining to NASA’s Artemis program.
The Zhurong rover has operated on the surface of Mars for over a year since it deployed on May 22nd, 2021. Before the rover suspended operations on May 20th, 2022, due to the onset of winter and the approach of seasonal sandstorms, Zhurong managed to traverse a total distance of 1.921 km (1.194 mi). During the first kilometer of this trek, the rover obtained vital data on Mars’ extremely weak magnetic fields. According to a new study by researchers from the Chinese Academy of Science (CAS), these readings indicate that the magnetic field is extremely weak beneath the rover’s landing site.