An asteroid the size of the Empire State Building flew past Earth in early February, coming within 1.8 million km (1.1 million miles) of our planet. Not only is it approximately the same size as the building, but astronomers found the asteroid – named 2011 AG5 — has an unusual shape, with about the same dimensions as the famous landmark in New York City.
Space News & Blog Articles
Jupiter is well known for its spectacular aurorae, thanks in no small part to the Juno orbiter and recent images taken by the James Webb Space Telescope (JWST). Like Earth, these dazzling displays result from charged solar particles interacting with Jupiter’s magnetic field and atmosphere. Over the years, astronomers have also detected faint aurorae in the atmospheres of Jupiter’s largest moons (aka. the “Galilean Moons“). These are also the result of interaction, in this case, between Jupiter’s magnetic field and particles emanating from the moons’ atmospheres.
When stars die, they spread the elements they’ve created in their cores out to space. But, other objects and processes in space also create elements. Eventually, that “star stuff” scatters across the galaxy in giant debris clouds. Later on—sometimes millions of years later—it settles onto planets. What’s the missing link between element creation and deposition on some distant world?
Hard to believe, but the Perseverance Rover has begun its third year exploring Mars. On Feb. 18, 2021, Perseverance rover survived the harrowing landing at Jezero Crater, and almost immediately, began an expedition to collect a geologically diverse set of rock samples, ones that could help answer the question if Mars once had ancient microbial life.
Planet 9 continues to remain elusive. This potential super-Earth-sized object in the outer Solar System is only hypothetical, as something out there appears to be gravitationally influencing several Kuiper Belt Objects into unusual orbits. Whatever or wherever it may be, Planet 9 has yet to be found, despite several different hypotheses and numerous observational searches.
If it turns out that a future extraterrestrial invasion force is headed by a clone of George Washington, we’ll have only ourselves to blame.
Blue Origin wants to build solar panels on the Moon, out of the Moon, SpaceX sold its floating landing pads, and another asteroid hits Earth exactly where and when astronomers predicted.
The European Space Agency is working on a new mission that would act as an early warning system for dangerous, hard-to-see asteroids. Called NEOMIR (Near-Earth Object Mission in the InfraRed), the spacecraft would orbit between the Earth and the Sun at the L1 Lagrange Point, finding space rocks that otherwise get lost in the glare of the Sun.
By the 1920s, astronomers learned that the Universe was expanding as Einstein’s Theory of General Relativity predicted. This led to a debate among astrophysicists between those who believed the Universe began with a Big Bang and those who believed the Universe existed in a Steady State. By the 1960s, the first measurements of the Cosmic Microwave Background (CMB) indicated that the former was the most likely scenario. And by the 1990s, the Hubble Deep Fields provided the deepest images of the Universe ever taken, revealing galaxies as they appeared just a few hundred million years after the Big Bang.
Astronomers have studied the star formation process for decades. As we get more and more capable telescopes, the intricate details of one of nature’s most fascinating processes become clearer. The earliest stages of star formation happen inside a dense veil of gas and dust that stymies our observations.
When you go to space, it’s going to change your brain. Count on it. That’s because space travelers enter microgravity, and that challenges everything the brain knows about gravity. The experience alters their brain functions and “connectivity” between different regions. It’s all part of the ability of our brains and nervous systems to change in response to changes in the environment, or because of traumatic brain stress or injuries.
Kilonovae are incredibly powerful explosions. Whereas regular supernovae occur when two white dwarfs collide, or the core of a massive star collapses into a neutron star, kilonovae occur when two neutron stars collide. You would think that neutron star collisions would produce explosions with all sorts of strange shapes depending on the angle and speed of the collisions, but new research shows kilonovae are very spherical, and this has some serious implications for cosmology.
In this era of exoplanet discovery, astronomers have found over 5,000 confirmed exoplanets, with thousands more awaiting confirmation and many billions more waiting to be discovered. These exoplanets exist in a bewildering spectrum of sizes, compositions, orbital periods, and just about every other characteristic that can be measured.
How do you measure an object’s weight from a distance? You could guess at its distance and therefore derive its size. Maybe you could further speculate about its density, which would eventually lead to an estimated weight. But these are far from the exact empirical studies that astrophysicists would like to have when trying to understand the weight of stars. Now, for the first time ever, scientists have empirically discovered the weight of a distant single star, and they did so using gravitational lensing.
As the successor to the venerable Hubble Space Telescope, one of the main duties of the James Webb Space Telescope has been to take deep-field images of iconic cosmic objects and structures. The JWST’s next-generation instruments and improved resolution provide breathtakingly detailed images, allowing astronomers to learn more about the cosmos and the laws that govern it. The latest JWST deep-field is of a region of space known as Abell 7244 – aka. Pandora’s Cluster – where three galaxy clusters are in the process of coming together to form a megacluster.
Roscosmos appears to be having some issues with a spacecraft again. In December, the Soyuz MS-22 spacecraft that delivered three crewmembers of Expedition 68 to the International Space Station (ISS) reported a leak in its coolant loop. On February 11th, engineers at the Russian Mission Control Center outside Moscow recorded a depressurization in Progress 82, an uncrewed cargo craft docked with the Poisk laboratory module. The cause of these leaks remains unknown, but Roscosmos engineers (with support from their NASA counterparts) will continue investigating.
Oftentimes in astronomy, it takes a village of telescopes and people to make an amazing find. In the case of the quasar NRAO 530, it took a planet full of radio dishes ganged together to peer into its heart. Then, it took a major collaboration of scientists to figure out what the instruments were telling them.
Exploring Mars is hazardous work. Robotic missions that are sent there have to contend with extreme temperatures, dust storms, intermittent sunlight, and rough terrain. In recent years, two robotic missions were lost due to dust alone, and all that roving around has done a number on the Curiosity rover’s treads. It’s understandable why mission teams are pleasantly surprised when their missions make it through a rough patch. This was the case with the Ingenuity team when they discovered that the rotorcraft, which has been exploring Mars alongside Perseverance, survived the night and is back in working order.
Astronomers have discovered a galaxy with very little or no stellar mass. Galaxies like these are called ‘dark galaxies.’ It contains clouds of gas but very few stars, possibly none. This is the only isolated dark dwarf galaxy in the local universe.
NASA’s Perseverance Rover has reached another milestone. It’s finished caching its samples for a potential return to Earth. The sample depot is located in Mars’ Jezero Crater, where Perseverance is busy searching for signs of ancient life.
In a recent study published in Nature Astronomy, an international team of researchers led by NASA and The George Washington University examined data from an October 2020 detection of what’s known as a “large spin-down glitch event”, also known as an “anti-glitch”, from a type of neutron star known as a magnetar called SGR 1935+2154 and located approximately 30,000 light-years from Earth, with SGR standing for soft gamma repeaters. Such events occur when the magnetar experiences a sudden decrease in its rotation rate, which in this case was followed by three types of radio bursts known as extragalactic fast radio bursts (FRBs) and then pulsed radio emissions for one month straight after the initial rotation rate decrease.

