In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll be cool in the shade of today’s topic: umbra!
Space News & Blog Articles
Mood lighting, swanky seats, plants, a bar … and a restroom with an out-of-this-world view: Those are the sorts of perks you’d expect on a luxury cruise, but the cruise that Space Perspective plans to offer with those amenities will take you 100,000 feet up, lofted by a balloon.
A decade ago, physicists wondered whether the discovery of the Higgs boson at Europe’s Large Hadron Collider would point to a new frontier beyond the Standard Model of subatomic particles. So far, that’s not been the case — but a new measurement of a different kind of boson at a different particle collider might do the trick.
Mars rovers are not known for being particularly speedy. Spirit and Opportunity managed a max speed of a whopping 5 cm per second, while Curiosity clocked in at a max speed of .1 kph. Over their long mission times, even those speeds opened up many potential areas to explore. But Perseverance is leaving them in the dust as it makes its way up to a river delta where it will begin its next round of sample collection.
More than 13 months after the Perseverance rover landed on Mars (on February 18, 2021), the rover’s cameras have finally spotted some of the parts of the Mars 2020 landing system that got the rover safely to the ground. The parachute and backshell were imaged by Perseverance’s MastCam-Z, seen off in the distance, just south of the rover’s current location. The image was taken on Sol 404, or April 6, 2022 on Earth.
Cassiopeia A is the remnant of a supernova that exploded 11,000 light-years away. The light from the exploding star likely reached Earth around 1670 (only a couple of years before Newton invented the reflecting telescope.) But there are no records of it because the optical light didn’t reach Earth.
When a meteoroid enters the Earth’s atmosphere at a very high speed it heats up. This heating up produces a streak of light and is termed a meteor. When a meteor is bright enough, about the brightness of Venus or brighter, it becomes a fireball. Sometimes these fireballs explode in the atmosphere, becoming bolides. These bolides are bright enough to be seen even during the day.
On July 5th, 2016, NASA’s Juno spacecraft arrived at Jupiter and began its four-year mission (which has since been extended to 2025) to study the gas giant’s atmosphere, composition, magnetosphere, and gravitational environment. Juno is the first dedicated mission to study Jupiter since the Galileo probe studied the system between 1995 and 2003. The images and data it has sent back to Earth have revealed much about Jupiter’s atmosphere, aurorae, polar storms, internal structure, and moons.
The European Space Agency (ESA) is learning how to touch down safely at the South Pole of the Moon, without ever leaving Earth. Actual Moon landings seem to be on the horizon in the next decade via the Artemis program, and astronauts are going to have to learn to handle the unique challenges of landing in the Moon’s polar environment. With low angle sunlight and deep, permanently shadowed craters, the Moon’s South Pole poses difficulties no Apollo mission ever faced. To get hands-on experience with this environment without risking human life, ESA is putting astronauts through their paces on high-tech simulators.
The James Webb Space Telescope continues to cool down out at its location at Lagrange Point 2, about 1.5 million kilometers from Earth. Since JWST is an infrared telescope, it needs to operate at extremely low temperatures, about 40 k (-223 degrees Celsius, -369.4 degrees Fahrenheit). But one instrument needs to be even colder.
Our Sun’s days are numbered. In about 5 billion years the Sun will expand into a red giant, casting off its outer layers before settling down to become a white dwarf. It’s the inevitable fate of most sunlike stars, and the process is well understood. But as a recent study shows, there are still a few things we have to learn about dying Suns.
This morning, at 11:17 AM EDT (08:17 AM PDT), the first all-private astronaut mission to the International Space Station (ISS) lifted off from Launch Complex 39A at NASA Kennedy Space Center in Florida. Designated Axiom Mission 1 (Ax-1), this mission consists of four commercial astronauts flying aboard the SpaceX Dragon Endeavour spacecraft that launched atop a SpaceX Falcon 9 rocket. The launch was live-streamed via NASA’s official Youtube channel (you can catch the replay here).
The Hubble space telescope has a primary mirror of 2.4 meters. The Nancy Grace Roman telescope has one at 2.4 meters and the James Webb Space Telescope has a whopping 6.5 meter primary mirror. These are all fine and well to get the job done that they were designed for, but what if… we could have even bigger mirrors?
Since the Renaissance astronomer Galileo Galilee first studied the heavens using a telescope he built himself, astronomers have been pushing the boundaries of what they can observe. After centuries of progress, they have been able to study and catalog objects in all but the earliest periods of the Universe. But thanks to next-generation instruments and technologies, astronomers will soon be able to observe the “Cosmic Dawn” era – ca. 50 million to billion years after the Big Bang.
In 2017, the Canadian Hydrogen Intensity Mapping Experiment (CHIME) began to gather light from the Universe to address some of the biggest questions and astrophysics and cosmology. Located at the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia, this interferometric radio telescope has been a game-changer for studying Fast Radio Bursts (FRBs), which remain one of the most mysterious cosmic mysteries facing astronomers today.
For over sixty years, scientists have been searching the cosmos for possible signs of radio transmission that would indicate the existence of extraterrestrial intelligence (ETI). In that time, the technology and methods have matured considerably, but the greatest challenges remain. In addition to having never detected a radio signal of extraterrestrial origin, there is a wide range of possible forms that such a broadcast could take.
NASA’s Kepler planet-hunting spacecraft was deactivated in November 2018, about ten years after it launched. The mission detected over 5,000 candidate exoplanets and 2,662 confirmed exoplanets using the transit method. But scientists are still working with all of Kepler’s data, hoping to uncover more planets in the observations.
Before the InSight Lander arrived on Mars, scientists could only estimate what the planet’s internal structure might be. Its size, mass, and moment of inertia were their main clues. Meteorites, orbiters, and in-situ sampling by rovers provided other clues.
With the first test of its MAREVL Engine complete, Maine’s space launch startup bluShift Aerospace looks to expand operations.
The term “cultured meat” has become a bit of a buzzword for the health food industry. This refers to meat produced in a lab using in vitro cell cultures derived from animal proteins. For many, this “alternative meat” is vital to combatting climate change by removing one of the chief causes of deforestation (making room for cattle ranches) and global warming (bovine methane emissions). For others, it’s an environmentally-friendly way of ensuring food security in an era of climate change.
It seems like only months ago that the Perseverance Rover landed in Jezero Crater on Mars. But in fact, it’s been there longer than a year. Perseverance has had company during this time; its sidekick, the Ingenuity helicopter, completed 23 flights in Mars’ thin atmosphere so far.