Technical challenges abound when doing space exploration. Some areas are so remote or isolated that engineers need to build a special purpose-made vehicle to visit them. That is certainly the case for some of the more remote parts of the moon – especially the as-yet unexplored caves on the moon. Now a graduate student at the Ecole Polytechnique Federale de Lausanne (EPFL) seems to have developed just such an access system.
Space News & Blog Articles
The field of extrasolar planet studies is undergoing a seismic shift. To date, 4,940 exoplanets have been confirmed in 3,711 planetary systems, with another 8,709 candidates awaiting confirmation. With so many planets available for study and improvements in telescope sensitivity and data analysis, the focus is transitioning from discovery to characterization. Instead of simply looking for more planets, astrobiologists will examine “potentially-habitable” worlds for potential “biosignatures.”
At the Space Telescope Science Institute (STSI) in Baltimore, Maryland, NASA engineers are busy aligning the mirrors and instruments on the James Webb Space Telescope (JWST). In the meantime, the mission team has provided us with another glimpse of what this observatory – a successor to the venerable Hubble Space Telescope – will see once it is fully operational. The latest teaser is a “telescope alignment evaluation image” of a distant star that looks red and spiked!
Gravitational waves are notoriously difficult to detect. Although modern optical astronomy has been around for centuries, gravitational wave astronomy has only been around since 2015. Even now our ability to detect gravitational waves is limited. Observatories such as LIGO and Virgo can only detect powerful events such as the mergers of stellar black holes or neutron stars. And they can only detect waves with a narrow range of frequencies from tens of Hertz to a few hundred Hertz. Many gravitational waves are produced at much lower frequencies, but right now we can’t observe them. Imagine raising a telescope to the night sky and only being able to see light that is a few shades of purple.
China’s Tianwen-1 lander and Zhurong rover touched down on the Martian plain Utopia Planitia on May 14, 2021 after spending about three months orbiting the Red Planet. While the Chinese Space Agency has shared images of the rover and lander (including a cute family portrait taken by a wireless remote camera), NASA’s Mars Reconnaissance Orbiter has been following the rover’s travels from above.
As the Apollo astronauts found out, mobility is everything. Apollo’s Lunar Roving Vehicle (LRV) – sometimes called the Lunar Rover or Moon Buggy – completely changed how the astronauts could explore the lunar surface.
Earth formed over 4.5 billion years ago via accretion. Earth’s building blocks were chunks of rock of varying sizes. From dust to planetesimals and everything in between. Many of those chunks of rock were carbonaceous meteorites, which scientists think came from asteroids in the outer reaches of the main asteroid belt.
In this series we are exploring the weird and wonderful world of astronomy jargon! Get your friends together to talk about today’s topic: the Local Group!
Although the Arecibo radio telescope is no more, it continues to deliver scientific discoveries. There is a wealth of Arecibo data astronomers continue to mine for new discoveries, and one of them is thanks to an astronomical technique known as planetary radar.
Under the full Moon, NASA’s Space Launch System (SLS) rocket rolled out to the launchpad for the first time. The journey began at the iconic Vehicle Assembly Building at Kennedy Space Center, with the gigantic stack of the mega rocket arriving at Launch Pad 39B in preparation for a series of final checkouts before its Artemis I test flight.
The path back to the moon is long and fraught with danger, both in the real, physical sense and also in the contractual, legal sense. NASA, the agency sponsoring the largest government-backed lunar program, Artemis, has already been feeling the pain on the contractual end. Legal battles have delayed the development of a critical component of the Artemis program – the Human Landing System (HLS). But now, the ball has started rolling again, and a NASA manager recently reported the progress and future vision of this vital part of the mission to the Institute of Electrical and Electronics Engineers at a conference.
In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll only be visible in the southern hemisphere after today’s topic: the Magellanic Clouds!
Why is there so much antimatter in the Universe? Ordinary matter is far more plentiful than antimatter, but scientists keep detecting more and more antimatter in the form of positrons. More positrons reach Earth than standard models predict. Where do they come from?
Oh, hello there new neighbor! In February, the Gaia spacecraft took a picture of its new closest companion in space at the second Lagrangian point, the James Webb Space Telescope.
In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll feel a little dense after reading about today’s topic: neutron stars!
Engineers and scientists for the James Webb Space Telescope have completed two more steps in the telescope’s primary mirror alignment process, and in a briefing today, officials said JWST’s optical performance appears to be better than even the most optimistic predictions.
Nothing can escape a black hole. General relativity is very clear on this point. Cross a black hole’s event horizon, and you are forever lost to the universe. Except that’s not entirely true. It’s true according to Einstein’s theory, but general relativity is a classical model. It doesn’t take into account the quantum aspects of nature. For that, you’d need a quantum theory of gravity, which we don’t have. But we do have some ideas about some of the effects of quantum gravity, and one of the most interesting is Hawking radiation.
As Russia wages its terrible war against its neighbour Ukraine, the deteriorating situation inside Russia is leading many Russians to flee the collapsing economy. According to Russian journalist Kamil Galeev, Roscosmos Director Dmitry Rogozin is prohibiting Roscosmos employees from leaving the increasingly isolated nation.
In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll feel like a brand new person after today’s topic: nova!
If humanity is ever going to find life on another planet in the solar system, it’s probably best to know where to look. Plenty of scientists have spent many, many hours pondering precisely that question, and plenty have come up with justifications for backing a particular place in the solar system as the most likely to hold the potential for harboring life as we know it. Thanks to a team led by Dimitra Atri of NYU Abu Dhabi, we now have a methodology by which to rank them.