A while back, we reported on a research group that was using an interesting mix of materials to create concrete on Mars. The University of Manchester researchers used blood and urine to create concrete bricks using Martian regolith stronger than concrete used on Earth. However, there was an obvious downside of literally requiring blood to make them, let alone the side effects of having astronauts potentially live in a building built partially out of their own bodily fluids. So the researchers thought up a different material whose usefulness in space will be familiar to anyone who has read Andy Weir’s most famous novel – potatoes.
Space News & Blog Articles
When the Apollo astronauts landed on the Moon, they had to perform tasks in 1/6th of Earth’s gravity. At first, walking and working in this low gravity environment posed some challenges. However, the astronauts soon adapted and figured out that hopping like a bunny made it easier to get around.
On March 23rd, sky observers marveled at a gorgeous display of northern and southern lights. It was reminder that when our Sun gets active, it can spark a phenomenon called “space weather.” Aurorae are among the most benign effects of this phenomenon.
Fast Radio Bursts (FRBs) were first detected in 2007 (the Lorimer Burst) and have remained one of the most mysterious astronomical phenomena ever since. These bright radio pulses generally last a few milliseconds and are never heard from again (except in the rare case of Repeating FRBs). And then you have Gravitational Waves (GW), a phenomenon predicted by General Relativity that was first detected on September 14th, 2015. Together, these two phenomena have led to a revolution in astronomy where events are detected regularly and provide fresh insight into other cosmic mysteries.
How do astronomers look for neutrinos? These small, massless particles whiz through the universe at very close to the speed of light. They’ve been studied since the 1950s and detecting them provides work for a range of very interesting observatories.
A Wisconsin-based startup called Type One Energy says it’s closed an over-subscribed $29 million financing round to launch its effort to commercialize a weird kind of nuclear fusion device known as a stellarator.
In February 2022, Russian military forces invaded Ukraine as part of what President Vladimir Putin described as a “limited military operation.” This operation quickly turned into a protracted war now in its second year. For Russia, the response from the international community has been anything but favorable, consisting of sanctions, embargoes, and the termination of programs. This has been especially true for Roscosmos, which has had several cooperative agreements canceled and terminated its participation in the International Space Station (ISS).
Beads of glass could become a key source of water for future crewed settlements on the moon, researchers say.
With the James Webb Space Telescope’s ability to detect and study the atmospheres of distant planets orbiting other stars, exoplanet enthusiasts have been anticipating JWST’s first data on some of the worlds in the famous TRAPPIST-1 system. This is the system where seven Earth-sized worlds are orbiting a red dwarf star, with several in the habitable zone.
Nothing excites space enthusiasts like a good alien mystery. The interstellar visitor ‘Oumuamua presented one as it moved through the inner solar system in 2017. At least one scientist has insisted that this pancake-shaped object is an alien spacecraft. That’s because of the way it accelerated away from the Sun as it passed through. However, a number of planetary scientists say its activity might be more comet-like—something fairly common in the solar system.
In December 2020, JAXA’s Hayabusa2 spacecraft delivered a pristine sample of otherworldly dust and rock from asteroid Ryugu to Earth. Scientists have since had the opportunity to study the sample, and announced last week that the asteroid contains organic molecules important for life. In particular, they discovered Niacin, otherwise known as vitamin B3, and Uracil, one of the four core components of ribonucleic acid (RNA).
Building with Legos is a favored pastime for many small children and adults. We’ve even covered some more space-oriented Lego sets here at UT. But, as the Lego movie points out, they constitute “a highly sophisticated interlocking brick system.” So why not take the idea underpinning Legos – that you can make anything you want out of a set of generic pieces and apply it to a much more serious scientific topic…like robots.
When the Artemis astronauts and future explorers go to the Moon and Mars, they’ll need power. Lots of it. Of course, they’ll use solar panels to generate the juice they need for habitats, experiments, rovers, and so on. But, they’ll need batteries for power storage. Those things weigh a lot and cost a fortune to send up from Earth. So, why not simply 3D print their own when they get there?
This past summer (June 14th to June 16th), representatives from the public space sector, the commercial space industry, and academic institutions convened at George Washington University in Washington D.C. for The Ninth Community Workshop for Achievability and Sustainability of Human Exploration of Mars. The invitation-only event was hosted by Explore Mars, Inc., a non-profit organization dedicated to fostering international collaboration and cooperation between government and industry to achieve the human exploration of Mars by the 2030s.
This past week was a mixed bag for Relativity Space and their 3D-printed methane-fueled rocket engine. While the company’s Terran 1 rocket blasted off successfully on Wednesday, March 22, the second stage failed to ignite a few minutes after launch. The rocket coasted to an altitude of about 129 km and then returned to Earth, crashing a few hundred kilometers downrange.
Hypervelocity stars (HVS) certainly live up to their name, traveling thousands of kilometers per second or a fraction of the speed of light (relativistic speeds). These speed demons are thought to be the result of galactic or black hole mergers, globular clusters kicking out members, or binary pairs where one star is kicked out when the other goes supernova. Occasionally, these stars are fast enough to escape our galaxy and (in some cases) take their planetary systems along for the ride. This could have drastic implications for our theories of how life could be distributed throughout the cosmos (aka. panspermia theory).
1800 light-years away, an unlikely survivor orbits an aged star. This rare planet is called a hot Neptune, and it’s one of only a small handful of hot Neptunes astronomers have found. Hot Neptunes are so close to their stars that the overpowering stellar radiation should’ve stripped away their atmospheres, leaving only a planetary core behind.
There’s a reason Jezero Crater was chosen as the landing site for the Perseverance Rover: it is considered one of the likeliest places to find any evidence if Mars was ever habitable for long periods of time. In this great new flyby video from ESA, you can get a birds-eye look at Perseverance’s home.
Life on Earth has been around for a long time—at least 3.8 billion years. During that time, it evolved significantly. Why has biodiversity here changed so much? A new study proposes a startling idea. Some major diversity changes are linked to supernovae—the explosions of massive stars. If true, it shows that cosmic processes and astrophysical events can influence the evolution of life on our planet.
When the DART spacecraft slammed into asteroid Dimorphos on September 26, 2022, telescopes worldwide (and in space) were watching as it happened. But others continued watching for numerous days afterward to observe the cloud of debris. DART’s (Double Asteroid Redirection Test) intentional impact was not only a test of planetary defense against an asteroid hitting our planet, but it also allowed astronomers the chance to study Dimorphos, a tiny moon or companion to asteroid Didymos.