The Vera C. Rubin Observatory, formerly the Large Synoptic Survey Telescope (LSST), was formally proposed in 2001 to create an astronomical facility that could conduct deep-sky surveys using the latest technology. This includes a wide-field reflecting telescope with an 8.4-meter (~27.5-foot) primary mirror that relies on a novel three-mirror design (the Simonyi Survey Telescope) and a 3.2-megapixel Charge-Coupled Device (CCD) imaging camera (the LSST Camera). Once complete, Rubin will perform a 10-year survey of the southern sky known as the Legacy Survey of Space and Time (LSST).
Space News & Blog Articles
It has often been likened to talcum powder. The ultra fine lunar surface material known as the regolith is crushed volcanic rock. For visitors to the surface of the Moon it can be a health hazard, causing wear and tear on astronauts and their equipment, but it has potential. The fine material may be suitable for building roads, landing pads and shelters. Researchers are now working to analyse its suitability for a number of different applications.
I remember reading about an audacious mission to endeavour to drill through the surface ice of Europa, drop in a submersible and explore the depths below. Now that concept may be taking a step closer to reality with researchers working on technology to do just that. Worlds like Europa are high on the list for exploration due to their potential to harbour life. If technology like the SLUSH probe (Search for Life Using Submersible Head) work then we are well on the way to realising that dream.
Missions to asteroids have been on a tear recently. Visits by Rosetta, Osirix-REX, and Hayabusa2 have all visited small bodies and, in some cases, successfully returned samples to the Earth. But as humanity starts reaching out to asteroids, it will run into a significant technical problem – bandwidth. There are tens of thousands of asteroids in our vicinity, some of which could potentially be dangerous. If we launched a mission to collect necessary data about each of them, our interplanetary communication and control infrastructure would be quickly overwhelmed. So why not let our robotic ambassadors do it for themselves – that’s the idea behind a new paper from researchers at the Federal University of São Paulo and Brazil’s National Institute for Space Research.
Artificial Intelligence is making its presence felt in thousands of different ways. It helps scientists make sense of vast troves of data; it helps detect financial fraud; it drives our cars; it feeds us music suggestions; its chatbots drive us crazy. And it’s only getting started.
Universe Today has explored the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, planetary geophysics, and cosmochemistry, and how this myriad of intricately linked scientific disciplines can assist us in better understanding our place in the cosmos and searching for life beyond Earth. Here, we will discuss the incredible research field of meteorites and how they help researchers better understand the history of both our solar system and the cosmos, including the benefits and challenges, finding life beyond Earth, and potential routes for upcoming students who wish to pursue studying meteorites. So, why is it so important to study meteorites?
Can binary black holes, two black holes orbiting each other, influence their respective behaviors? This is what a recent study published in Science Advances hopes to address as a team of more than two dozen international researchers led by the Massachusetts Institute of Technology (MIT) investigated how a smaller black hole orbiting a supermassive black hole could alter the outbursts of the energy being emitted by the latter, essentially giving it “hiccups”. This study holds the potential to help astronomers better understand the behavior of binary black holes while producing new methods in finding more binary black holes throughout the cosmos.
Some stars are so massive and so energetic that they’re a million times brighter than the Sun. This type of star dominated the early Universe, playing a key role in its development and evolution. The first of its kind are all gone now, but the modern Universe still forms stars of this type.
On March 20th, China’s Queqiao-2 (“Magpie Bridge-2”) satellite launched from the Wenchang Space Launch Site LC-2 on the island of Hainan (in southern China) atop a Long March-8 Y3 carrier rocket. This mission is the second in a series of communications relay and radio astronomy satellites designed to support the fourth phase of the Chinese Lunar Exploration Program (Chang’e). On March 24th, after 119 hours in transit, the satellite reached the Moon and began a perilune braking maneuver at a distance of 440 km (~270 mi) from the lunar surface.
A recent study presented at the 55th Lunar and Planetary Science Conference (LPSC) discusses the Mars Astrobiology, Resource, and Science Explorers (MARSE) mission concept and its Simplified High Impact Energy Landing Device (SHIELD), which offers a broader and cheaper method regarding the search for—past or present—life on the Red Planet, specifically by using four rovers at four different landing sites across Mars’ surface instead of just one-for-one. This concept comes as NASA’s Curiosity and Perseverance rovers continue to tirelessly explore the surface of Mars at Gale Crater and Jezero Crater, respectively.
Catching a supernova in action is tricky business. There is no way to predict them, and they don’t occur very often. Within the Milky Way they only occur about once a century, and the last one was observed in 1604.
Rosalind Franklin, the ESA’s Mars rover, is scheduled to launch no sooner than 2028. Its destination is Oxia Planum, a wide clay-bearing plain to the east of Chryse Planitia. Oxia Planum contains terrains that date back to Mars’ Noachian Period, when there may have been abundant surface water, a key factor in the rover’s mission.
The Search for Extraterrestrial Intelligence has been ongoing for decades at this point. Despite that, we have yet to find any rock-hard evidence of a signal from an alien civilization. When asked about this, experts point out just how little of the overall signal space we’ve analyzed. A signal could be coming from anywhere in the sky, at any frequency, and might not be continuous. Constraining the “search space” could help us find a signal faster, but what could we use to constrain it? It’s hard to think like an alien intelligence, let alone to mimic them.
We’ve reported on a technology called pulsed plasma rockets (PPRs) here at UT a few times. Several research groups have worked on variations of them. They are so popular partly because of their extremely high specific impulse and thrust levels, and they seemingly solve the trade-off between those two all-important variables in space exploration propulsion systems. Essentially, they are an extremely efficient propulsion methodology that, if scaled up, would allow payloads to reach other planets in weeks rather than months or years. However, some inherent dangers still need to be worked out, and overcoming some of those dangers was the purpose of a NASA Institute for Advanced Concepts (NIAC) project back in 2020.
The Milky Way has many satellite galaxies, most notably the Large and Small Magellanic Clouds. They’re both visible to the naked eye from the southern hemisphere. Now astronomers have discovered another satellite that’s the smallest and dimmest one ever detected. It may also be one of the most dark matter-dominated galaxies ever found.
On February 15th, Intuitive Machines (IM) launched its first Nova-C class spacecraft from Kennedy Space Center in Florida atop a SpaceX Falcon 9 rocket. On February 22nd, the spacecraft – codenamed Odysseus (or “Odie”) – became the first American-built vehicle to soft-land on the lunar surface since the Apollo 17 mission in 1972. While the landing was a bit bumpy (Odysseus fell on its side), the IM-1 mission successfully demonstrated technologies and systems that will assist NASA in establishing a “sustained program of lunar exploration and development.”
It’s a well known fact that black holes absorb anything that falls into them. Often before material ‘vanishes’ inside it forms into an accretion disk around them. Like the progenitor stars, the black holes have powerful magnetic fields and these can generate jets that blast away from the black hole. A similar process occurs in neutron stars that are orbiting other stars and recent observations holes have shown that some material in the jets travel at speeds 35-40% the speed of light.
Measuring the distance to far away objects in space can be tricky. We don’t even know the precise distance to even our closest neighbors in the Universe – the Small and Large Magellanic Clouds. But, we’re starting to get to the tools to measure it. One type of tool is a Cepheid Variable – a type of star that varies its luminosity in a well-defined pattern. However, we don’t know much about their physical properties, making utilizing them as distance markers harder. Finding their physical properties would be easier if there were any Cepheid binaries that we could study, but astronomers have only found one pair so far. Until a recent paper from researchers from Europe, the US, and Chile shows measurements of 9 additional binary Cepheid systems – enough that we can start understanding the statistics of these useful distance markers.
The Solar and Heliospheric Observatory (SOHO) was designed to examine the Sun, but as a side benefit, it has been the most successful comet hunter ever built. Since early in the mission, citizen scientists have been scanning through the telescope’s data, searching for icy objects passing close to the Sun. An astronomy student in Czechia has identified 200 comets in SOHO data since he started in 2009 at the age of 13. He recently spotted the observatory’s 5,000th comet.
Anyone can be an underachiever, even if you’re an astronomical singularity weighing over four billion times the mass of the Sun. At least the quasar H1821+643 doesn’t have parents to be disappointed in it. But its underachievement could shed light on how quasars, a potent type of black hole, can come to influence entire clusters of galaxies, as described in a new paper from researchers at the University of Nottingham and Harvard.
We know how stars form. Clouds of interstellar gas and dust gravitationally collapse to form a burst of star formation we call a stellar nursery. Eventually, the cores of these protostars become dense enough to ignite their nuclear furnace and shine as true stars. But catching stars in that birth-moment act is difficult. Young stars are often hidden deep within their dense progenitor cloud, so we don’t see their light until they’ve already started shining. But new observations from the Hubble Space Telescope have given us our earliest glimpse of a shiny new star.

