What are the hydrocarbon seas on Titan really like? While the upcoming Dragonfly helicopter mission to Saturn’s hazy and frigid moon should arrive by 2034 to explore Titan’s atmosphere, the need remains for a mission that could study the moon’s mysterious seas and lakes, filled with liquid hydrocarbons.
Space News & Blog Articles
When the first people set foot on the Moon for long-term projects, they’ll need a lot of things, including their own time zone. That makes sense since they’ll be on an entirely different world. And, they’ll depend on a whole new set of technologies that will need time coordination with each other. So, space agencies are now figuring out what time zone the Moon will have.
NASA’s Curiosity Rover usually looks down at the ground, studying nearby rocks and craters. But sometimes, it looks up and sees something wonderful.
The ongoing effort to under Martian geology and the planet’s history continues. A recent paper from a scientific team in China looks at the data collected by Zhurong, a rover that has been in place on the Red Planet since 2021. While it didn’t find any evidence of water in the basin it was looking in, it did find some interesting buried features and provided more data to our mounting understanding of one of our nearest neighbors.
In the 1930s, astrophysicists theorized that at the end of their life cycle, particularly massive stars would collapse, leaving behind remnants of infinite mass and density. As a proposed resolution to Einstein’s field equations (for his Theory of General Relativity), these objects came to be known as “black holes” because nothing (even light) could escape them. By the 1960s, astronomers began to infer the existence of these objects based on the observable effects they have on neighboring objects and their surrounding environment.
Black holes and neutron stars are among the odder denizens of the cosmic zoo. They’re both dense collections of matter and, except for supermassive black holes, are the end states of massive stars. Fundamentally, they’re two different types of objects that are detectable via the activity in the accretion disks that form around them. Astronomers recently observed an object that acted like a black hole but turned out to be a neutron star. The clues lay in the accretion disk surrounding it.
Mars is a long way from Earth, making it challenging to communicate with. That difficult communication is becoming ever more important as we launch more and more craft to the Red Planet. It will become absolutely critical when we send actual people there. So what can be done to increase the speed of communications between our solar system’s blue and red planets? A paper from researchers primarily based in Spain looks at different networking topologies that could help solve some of the communication problems.
A Japanese company has put out the call for passengers who’d be willing to pay more than $175,000 for an hours-long ride in a balloon-borne capsule that will rise as high as 15 miles (25 kilometers).
Astronomy is poised for another leap. In the next several years, major ground-based telescopes will come online, including the Extremely Large Telescope (ELT,) the Thirty Meter Telescope (TMT,) the Giant Magellan Telescope (GMT,) and the Vera Rubin Observatory. The combined power of these telescopes will help drive discovery in the next couple of decades.
As tragic as it is, engulfment of a planetary object by its stellar parent is a common scenario throughout the universe. But it doesn’t have to end in doom. A team of astrophysicists have used computer simulations to discover that planets can not only survive when their star eats them, but they can also drive its future evolution.
Astronomers have detected a small, compact source embedded in a gap in the disk surrounding a young star. They believe it is a baby planet in the process of growing.
For generations, scientists have probed the structure and composition of the planet using seismic wave studies. This consists of measuring shock waves caused by Earthquakes as they penetrate and pass through the Earth’s core region. By noting differences in speed (a process known as anisotropy), scientists can determine which regions are denser than others. These studies have led to the predominant geological model that incorporates four distinct layers: a crust and a mantle (composed largely of silicate minerals) and an outer core and inner core composed of nickel-iron.
The Big Bang may have not been alone. The appearance of all the particles and radiation in the universe may have been joined by another Big Bang that flooded our universe with dark matter particles. And we may be able to detect it.
It’s notoriously difficult to take a picture of a black hole. But when they are surrounded by material we have an opportunity to witness the hole carved out by the event horizon. But what we see in the famous images of black holes isn’t the event horizon itself, but a magnified and enlarged version known as the shadow.
On March 1, 2023, NASA’s Juno spacecraft flew by Jupiter’s moon Io, coming within 51,500 km (32,030 miles) of the innermost and third-largest of the four Galilean moons. The stunning new images provide the best and closest view of the most volcanic moon in our Solar System since the New Horizons mission flew past Io and the Jupiter system in 2006 on its way to Pluto.
Evolution is a problem-solver, and one of the problems it solved in many different ways is locomotion. Birds fly. Fish swim. Animals walk.
Less than a year and a half into its primary mission, the James Webb Space Telescope (JWST) has already revolutionized astronomy as we know it. Using its advanced optics, infrared imaging, and spectrometers, the JWST has provided us with the most detailed and breathtaking images of the cosmos to date. But in the coming years, this telescope and its peers will be joined by another next-generation instrument: the Nancy Grace Roman Space Telescope (RST). Appropriately named after “the Mother of Hubble,” Roman will pick up where Hubble left off by peering back to the beginning of time.
Our universe may feature large, macroscopic clumps of dark matter, known as q-balls. These q-balls would be absolutely invisible, but they may reveal their presence through tiny magnifications of starlight.
NASA’s Apollo program most notably explored the Moon. But it also helped us study the Earth as well, as it provided some of the first high-resolution images of our whole planet, like the famous “Blue Marble” photo taken by the Apollo 17 astronauts.
Black holes are the most massive objects that we know of in the Universe. Not stellar mass black holes, not supermassive black holes (SMBHs,) but ultra-massive black holes (UMBHs.) UMBHs sit in the center of galaxies like SMBHs, but they have more than five billion solar masses, an astonishingly large amount of mass. The largest black hole we know of is Phoenix A, a UMBH with up to 100 billion solar masses.