Astronomers using the ALMA Observatory have discovered an unusual, massive star near the center of our galaxy, a star that has two spiral arms. The arms are part of an accretion disk, a broad disk of dust and gas surrounding the protostar. While this is not the first star to be seen with such rare arm-like features, researchers say they believe they can track the formation of the spiral arms to a close encounter the star had with another object.
Space News & Blog Articles
We are carbon-based life forms. That means the basis for the chemical compounds that forms our life is the element carbon. It’s crucial because it bonds with other elements such as hydrogen and oxygen to create the complex molecules that are part of life. So, when we look for evidence of life elsewhere in the solar system, we look for carbon. That includes Mars.
A microwave oven–sized cubesat launched to space today from New Zealand by commercial company Rocket Lab and their Electron rocket. The small satellite will conduct tests to make sure the unique lunar orbit for NASA’s future Lunar Gateway is actually stable.
Earth’s oceans are one huge, uniform electrolyte solution. They contain salt (sodium chloride) and other nutrients like magnesium, sulphate, and calcium. We can’t survive without electrolytes, and life on Earth might look very different without the oceans’ electrolyte content. It might even be non-existent.
The thing with black holes is they’re hard to see. Typically we can only detect their presence when we can detect their gravitational pull. And if there are rogue black holes simply traveling throughout the galaxy and not tied to another luminous astronomical, it would be fiendishly hard to detect them. But now we have a new potential data set to do so.
On February 11th, 2016, researchers at the Laser Interferometer Gravitational-Wave Observatory (LIGO) announced the detection of gravitational waves (GW) for the first time. As predicted by Einstein’s General Theory of Relativity, these waves result from massive objects merging, which causes ripples through spacetime that can be detected. Since then, astrophysicists have theorized countless ways that GWs could be used to study physics beyond the standard models of gravity and particle physics and advance our understanding of the Universe.
Dust is an everyday feature on Mars and wreaks havoc on various pieces of equipment humans decide to send to it, such as Insight’s continual loss of power or the losses of Opportunity and Spirit. But we’ve never really understood what causes the dust to get up into the air in the first place. That equipment that is so affected by it usually isn’t set up to monitor it, or if it is, it has been sent to a place where there isn’t much dust, to begin with. Now, that has changed with new readings from Perseverance in Jerezo crater, and the answer shouldn’t be much of a surprise – dust devils seem to cause some of the dust in the atmosphere on Mars. But strong winds contribute a significant amount too.
Sunspots are typically no real reason to worry, even if they double in size overnight and grow to twice the size of the Earth itself. That’s just what happened with Active Region 3038 (AR3038), a sunspot that happens to be facing Earth and could produce some minor solar flares. While there’s no cause for concern, that does mean a potentially exciting event could happen – spectacular auroras.
The Lunar Reconnaissance Orbiter (LRO) – NASA’s eye-in-the-sky in orbit around the Moon – has found the crash site of the mystery rocket booster that slammed into the far side of the Moon back on March 4th, 2022. The LRO images, taken May 25th, revealed not just a single crater, but a double crater formed by the rocket’s impact, posing a new mystery for astronomers to unravel.
The Hubble space telescope has provided some of the most spectacular astronomical pictures ever taken. Some of them have even been used to confirm the value of another Hubble – the constant that determines the speed of expansion of the Universe. Now, in what Nobel laureate Adam Reiss calls Hubble’s “magnum opus,” scientists have released a series of spectacular spiral galaxies that have helped pinpoint that expansion constant – and it’s not what they expected.
Three-dimensional models of astronomical objects can be ridiculously complex. They can range from black holes that light doesn’t even escape to the literal size of the universe and everything in between. But not every object has received the attention needed to develop a complete model of it, but we can officially add another highly complex model to our lists. Astronomers at the University of Arizona have developed a model of VY Canis Majoris, a red hypergiant that is quite possibly the largest star in the Milky Way. And they’re going to use that model to predict how it will die.
If NASA’s Artemis project to return to the Moon permanently is going to succeed, it will need a lot of power. Shipping traditional fossil fuels up there is impractical, and surface solar cells won’t work for the two weeks that a given side of the Moon is shadowed. So the best option may be to set up a nuclear power station. NASA solicited some ideas along those lines with a preliminary design request for proposal – and they recently announced that three groups would each receive $5 million to develop preliminary designs for surface-based lunar fission reactors.
Since 2012, NASA’s Curiosity rover has been exploring the Gale Crater for clues about Mars’ past and possible evidence that it once supported life. For the past year, this search has centered on the lower levels of Mount Sharp, a transitional zone between a clay-rich region and one filled with sulfates (a type of mineral salt). These regions can offer insight into Mars’ warm, watery past, but the transition zone between them is also of scientific value. In short, the study of this region may provide a record of the major climatic shift that took place billions of years ago on Mars.
Its solar panels are caked with dust and the batteries are running out of juice, but NASA’s InSight Mars lander continues to soldier forth collecting more science about the Red Planet until its very last beep. To conserve energy, InSight was projected to shut down its seismometer—its last operational science instrument—by the end of June, hoping to survive on its remaining power until December. The seismometer has been the key instrument designed to measure marsquakes, which it has been recording since it touched down on Mars in 2018, and recently recorded a 5.0-magnitude quake, the biggest yet.
There are few things in this world that brings feelings of awe and wonder more than a rocket launch. Watching a literal tower of steel slowly lift off from the ground with unspeakable power reminds us of what humanity can achieve despite our flaws, disagreements, and differences, and for the briefest of moments these magnificent spectacles are capable of bringing us all together regardless of race, creed, and religion.
NASA says it’s finished with having to do full-scale dress rehearsals for the first liftoff of its moon-bound Space Launch System rocket. But it’s not finished with having to make fixes.
Remember Mechazilla, that tall launch tower at the SpaceX Starbase in Texas that will stack Starships and “catch” spent Super Heavy boosters? SpaceX began constructing an identical launch tower at Cape Canaveral in Florida, where Starships will also be launching from soon. This tower is taking shape alongside SpaceX’s Launch Complex-39A (LC-39A) facilities at NASA’s Kennedy Space Center. Once complete, the launch tower will stand about 146 meters (~480 ft) in height, making it the second-tallest space-related structure on the East Coast, second to NASA’s massive Vehicle Assembly Building (VAB).
The Orion Nebula is a well-known feature in the night sky and is visible in small backyard telescopes. Orion is a busy place. The region is known for active star formation and other phenomena. It’s one of the most scrutinized features in the sky, and astronomers have observed all kinds of activity there: planets forming in protoplanetary disks, stars beginning their lives of fusion inside collapsing molecular clouds, and the photoevaporative power of massive hot stars as they carve out openings in clouds of interstellar gas.
Neutron stars are dense remnants of large stars. They are the collapsed cores of stars formed during a supernova explosion. While we know generally how they form, we are still learning how they evolve, particularly when they are young. But that’s starting to change thanks to large sky surveys, which have allowed astronomers to observe a neutron star that could be little more than a decade old.
Tea is useful for all kinds of things, including caffeinating plenty of writers worldwide. There are also many varieties of it, some of which advocates claim to have superpowers regarding the health benefits they grant. Kombucha is one of those – originally thought to have originated in China, it has become adopted worldwide in no small part because of innumerable, dubious “health benefits” of the drink. But now, scientists did find one potential health benefit, at least to bacteria – eating kombucha culture would help them survive on Mars.