We look forward to this every year! The Astronomy Photographer of the Year competition showcases and recognizes some of the most stunning views of the night sky and astronomical objects. The shortlisted images from this year’s competition have now been released, and they include awe-inspiring scenes of the Milky Way, colliding galaxies, stellar nurseries, planets, nebula and the always photogenic Moon.
Space News & Blog Articles
Two Lego designers with a history of space-themed projects have teamed up for a new proposed set: China’s Long March CZ-5 and Tianwen-1 Mission. The set is currently gathering supporters on the LEGO Ideas website. If it gets enough support, LEGO will review it and possibly create it.
There’s a population of stars in the heart of our galaxy whipping around Sagittarius A* (the Milky Way’s central supermassive black hole). Astronomers just found the closest, fastest one (so far). It’s called S4716 and it orbits Sag A* once every four years. That makes it officially the fastest star moving at the heart of our galaxy. To give you some perspective, the Sun moves around the center of the galaxy at a much more leisurely pace once every 230 million years.
In 1687, Sir Isaac Newton published his magnum opus, Philosophiæ Naturalis Principia Mathematica, which effectively synthesized his theories on motion, velocity, and universal gravitation. In terms of the latter, Newton offered a means for calculating the force of gravity and predicting the orbits of the planets. Since then, astronomers have discovered that the Solar System is merely one small point of light that orbits the center of the Milky Way Galaxy. On occasion, other stars will pass close to the Solar System, which can cause a dramatic shakeup that can kick objects out of their orbits.
The search for life—even ancient life—on Mars is trickier than we thought. In a recent study published in the journal Astrobiology, researchers have determined that NASA’s Mars Perseverance (Percy) Rover will have to dig two meters (6.6 feet) beneath the Martian surface in order to find traces of ancient life. This is because the surface of Mars is constantly bombarded with extreme levels of solar radiation that scientists hypothesize would quickly degrade small molecules such as amino acids. The reason for this extreme level of radiation is due to the absence of a magnetic field, which scientists believe was stripped away billions of years ago when the planet’s liquid outer core ceased to produce the dynamo that created the field.
Physicists say they’ve found evidence in data from Europe’s Large Hadron Collider for three never-before-seen combinations of quarks, just as the world’s largest particle-smasher is beginning a new round of high-energy experiments.
The success of the Mars Ingenuity helicopter has encouraged engineers to consider and reconsider all options for remote aerial observations of the Red Planet. Additional methods for birds-eye views of Mars would not only provide higher resolution data on the landscapes where rovers can’t go — such as canyons and volcanoes — but also could include studying atmospheric and climate processes that current orbiters and rovers aren’t outfitted to observe.
The scientific and astronomical community are eagerly waiting for Tuesday, July 12th, to come around. On this day, the first images taken by NASA’s James Webb Space Telescope (JWST) will be released! According to a previous statement by the agency, these images will include the deepest views of the Universe ever taken and spectra obtained from an exoplanet atmosphere. In another statement issued yesterday, the images were so beautiful that they almost brought Thomas Zarbuchen – Associate Administrator for NASA’s Science Mission Directorate (SMD) – to tears!
The United States Government has declared that it will no longer be performing tests of Anti-Satellite (ASAT) weapons. In a public statement during a visit to the Vandenberg Space Force Base, Vice President Kamala Harris confirmed that this policy has the primary purpose of setting an example to other countries. It represents an important step in the direction of establishing “space norms” for all countries to follow.
NASA teases JWST images, Rocket Lab launches CAPSTONE, mystery rocket’s crash site found on the Moon, how magnetars are created, ISS gets more independent from Russia and more.
It’s nice to have a feel-good story every once in a while, so here’s one to hold off the existential dread: the Earth isn’t likely to get flung off into deep space for at least 100,000 years. In fact, all of the Solar System’s planets are safe for that time frame, so there is good news all around, for you and your favorite planetary body.
A Chandra X-ray Observatory view of the supermassive black hole at the heart of quasar H1821+643. Courtesy NASA/CXC/Univ. of Cambridge/J. Sisk-Reynés et al.
Within the Solar System, most of our astrobiological research is aimed at Mars, which is considered to be the next-most habitable body beyond Earth. However, future efforts are aimed at exploring icy satellites in the outer Solar System that could also be habitable (like Europa, Enceladus, Titan, and more). This dichotomy between terrestrial (rocky) planets that orbit within their a system’s Habitable Zones (HZ) and icy moons that orbit farther from their parent stars is expected to inform future extrasolar planet surveys and astrobiology research.
Making a 3D map of our galaxy would be easier if some stars behaved long enough to get good distances to them. However, red supergiants are the frisky kids on the block when it comes to pinning down their exact locations. That’s because they appear to dance around, which makes pinpointing their place in space difficult. That wobble is a feature, not a bug of these massive old stars and scientists want to understand why.
Stars form inside massive clouds of gas and dust called molecular clouds. The Nebular Hypothesis explains how that happens. According to that hypothesis, dense cores inside those clouds of hydrogen collapse due to instability and form stars. The Nebular Hypothesis is much more detailed than that short version, but that’s the basic idea.
Magnetars are some of the most fascinating astronomical objects. One teaspoon of the stuff they are made out of would weigh almost one billion tons, and they have magnetic fields that are hundreds of millions of times more powerful than any magnetic that exists today on Earth. But we don’t know much about how they form. A new paper points to one possible source – mergers of neutron stars.
When white dwarfs go wild, their planets suffer through the resulting chaos. The evidence shows up later in and around the dying star’s atmosphere after it gobbles up planetary and cometary debris. That’s the conclusion a team of UCLA astronomers came to after studying the nearby white dwarf G238-44 in great detail. They found a case of cosmic cannibalism at this dying star, which lies about 86 light-years from Earth.
Mapping the interior of the ice giants is difficult, to say the least. Not only are they far away and therefore harder to observe, but their constant ice cover makes it extremely hard to detect what lies underneath. So scientists must devise more ingenious ways to see what’s inside them. A team from the University of Idaho, Cal Tech, Reed College, and the University of Arizona think they might have come up with a way – to look at the structure of Neptunes’ and Uranus’ rings.
When NASA sent the Mars Reconnaissance Orbiter (MRO) to the red planet in 2006, the spacecraft took an instrument with it called CRISM—Compact Reconnaissance Imaging Spectrometer for Mars. CRISM’s job is to produce maps of Mars’ surface mineralogy. It’s been an enormous success, but unfortunately, the loss of its last cryocooler in 2017 means the spectrometer can only undertake limited observations.
Northrup Grumman’s Cygnus cargo spacecraft conducted a successful reboost of the International Space Station over the past weekend, on Saturday, June 25, 2022. The Cygnus NG-17 “Piers Sellers” is the first US-based spacecraft to provide a substantial orbital adjustment to the ISS since the space shuttles retired in 2011. Russia’s Progress cargo spacecraft has been the primary source for station reboosts, attitude control, and debris avoidance maneuvers.