An independently appointed review board recently announced that NASA, their Jet Propulsion Laboratory (JPL), and the California Institute of Technology (Caltech) have exceeded expectations in taking steps to ensure the successful launch of the metal-rich asteroid-hunting Psyche mission this October. This comes after Psyche’s initial launch date was delayed from August 2022 due to late delivery of the spacecraft’s flight software and testing equipment, which prevented engineers from performing the necessary checkouts prior to launch.
Space News & Blog Articles
A recent study published in Science examines how thin channels inside impact craters on Mars could have formed from Martian gullies, which share similar characteristics with gullies on Earth and are typically formed from cascading meltwater, despite the Martian atmosphere being incapable of supporting liquid water on its surface. However, the researchers hypothesize these gullies could have formed during periods of high obliquity, also known as axial tilt, on Mars, which could have resulted in a brief rise in surface temperatures that could have melted some surface and subsurface ice, leading to meltwater cascading down the sides of impact craters across the planet.
We’ve seen the Milky Way with ultraviolet eyes, through x-ray vision, gamma-ray views, radio emissions, microwaves, and visible light. Now, consider a neutrino point of view. Thanks to the IceCube Collaboration, we get to see our home galaxy through the lens of this mysterious particle. It’s an eerie sight that also tells us our galaxy isn’t quite like the others. It’s a neutrino desert.
NASA recently used its powerful High Resolution Imaging Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter to take a breathtaking image of a dust devil traversing Syria Planum on Mars. One unique aspect of dust devils is their shadows can be used to estimate their height, which have been estimated to reach 20 km (12 miles) kilometers into the Martian sky. Studying dust devils on Mars is a regular occurrence for the scientific community and can help scientists better understand surface processes on other planets. But with the atmospheric pressure on Mars being only a fraction of Earth’s, what processes are responsible for producing them?
In a recent study published in The Astrophysical Journal Letters, a team of astronomers used the W. M. Keck Observatory on Maunakea, Hawai?i Island to identify exoplanet, AF Lep b, which is three times the mass of Jupiter orbiting a Sun-sized star located approximately 87.5 light-years from Earth. What makes this discovery unique is AF Lep b is the first exoplanet discovered using a method called astrometry, which involves measuring unexpected, miniscule changes in the position of a star relative to nearby stars, which could indicate another object, an exoplanet, is causing gravitational tugs on its parent star.
Concern over global light pollution is growing. Astronomers are noticing its growing effect on astronomical observations, just as predicted in prior decades. Our artificial light, much of which is not strictly necessary, is interfering with our science.
After almost two decades of ups and downs, Virgin Galactic sent its first customers to the edge of space aboard its VSS Unity rocket plane.
Two of the most important telescopes being constructed at the moment are Vera C. Rubin and Nancy Grace Roman. Each has the capability of transforming our understanding of the universe, but as a recent paper on the arxiv shows, they will be even more transformative when they work together.
It wasn’t long after the Big Bang that early galaxies began changing the Universe. Less than a billion years later, they had already put on a lot of weight. In particular, their central supermassive black holes were behemoths. New images from JWST show two massive galaxies as they appeared less than a billion years after the universe began.
In the near future, NASA and other space agencies plan to send crews beyond Low Earth Orbit (LEO) to perform long-duration missions on the Moon and Mars. To meet this challenge, NASA is developing life support systems that will sustain crew members without the need for resupply missions from Earth. These systems must be regenerative and closed-loop in nature, meaning they will recycle consumables like food, air, and water without zero waste. Currently, crews aboard the International Space Station (ISS) rely on an Environmental Control and Life Support System (ECLSS) to meet their needs.
We’ve become familiar with LIGO/VIRGO’s detections of colliding black holes and neutron stars that create gravitational waves, or ripples in the fabric of space-time. However, the mergers between supermassive black holes – billions of times the mass of the Sun — generate gravitational waves too long to register with these instruments.
Engineers at NASA’s Jet Propulsion Laboratory (NASA-JPL) are busy keeping the Perseverance rover and Ingenuity helicopter functioning in Jezero Crater on Mars while these robotic explorers continue the search for ancient microbial life on the Red Planet. But some of those same engineers have also been busy working with LEGO designers on new one-tenth-scale LEGO Technic buildable models of these very same robotic explorers with the goal of inspiring the next generation of NASA scientists and engineers.
We say it all the time here at UT – getting to space is hard. It’s even more hard to do new and interesting things in space. And when projects get hard, that usually means they cost more money. That is certainly the case for one of the most anticipated missions on NASA’s current docket – the Mars Sample Return (MSR) mission. And it’s not looking like it’s going to get any easier anytime soon.
In exoplanetology, the ring around the star is often called the “Goldilocks zone,” in reference to the 19th-century fairy tale Goldilocks and the Three Bears. In that story, Goldilocks encounters sets of three objects that are either too extreme for her liking or just right. In the case of a bowl of porridge, the three are too hot, too cold, and just right, hence the analogy to an exoplanet’s position around its star. If it’s too close to its parent star, the planet is too hot, and liquid water, the necessary ingredient for life, won’t exist. If it’s too far, the planet is too cold, and the only water on its surface will be ice. But even the “just right” category has some wiggle room. Many planetary scientists consider Venus to be on the inner edge of our star’s “just right” habitable zone. So why did it end up with such a different fate than our pale blue dot? A team of researchers, led by Lisa Kaltenegger at Cornell, think they have found a way to answer that question – by turning the world’s most powerful space telescope towards a star about 100 light years away and directly observing an exoplanet’s atmosphere.
A stellar nursery sounds like a placid place where baby stars go about their business undisturbed. But, of course, a stellar nursery is nothing like that. (Babies are noisy and cry a lot.) They’re dynamic places where powerful elemental forces rage mightily and bend the surroundings to their will. And this one, even though its name is the drowsy-sounding Smiling Cat Nebula, is no exception.
Remember how a new car smells? It’s a chemical signature of all the materials used to make the car’s interior. What if you could use chemical signatures to learn about newborn planets?
Since the 1990s, thanks to observations by the venerable Hubble Space Telescope (HST), astronomers have contemplated the mystery of cosmic expansion. While scientists have known about this since the late-1920s and early-30s, images acquired by Hubble‘s Ultra Deep Fields campaign revealed that the expansion has been accelerating for the past six billion years! This led scientists to reconsider Einstein’s theory that there is an unknown force in the Universe that “holds back gravity,” which he named the Cosmological Constant. To astronomers and cosmologists today, this force is known as “Dark Energy.”
Our understanding of galaxies is rooted in the fact that we can see so many of them. Some, such as the Andromeda and Pinwheel galaxies are fairly close, and others are more distant, but all of them give a unique view. Because of this, we can see how the various types of galaxies appear from different points of view, from face-on to edge-on and all angles in between. But there is one galaxy that’s a bit harder to map out, and that’s our own. Because we are in the galactic plane of the Milky Way, it can be difficult to create an accurate bird’s-eye view of our home galaxy. That’s where a recent study in Nature Astronomy comes in.
A professor from Northumbria University in the North East region of England has been granted telescope time with NASA’s James Webb Space Telescope (JWST) later this year to study Jupiter’s upper atmosphere, also known as its ionosphere. Being granted such access to JWST is extremely competitive which makes getting access to use its powerful instruments to study the cosmos a very high honor.
Almost anywhere you go on the internet, it seems nearly impossible to escape articles on AI. Even here at UT, we’ve published several. Typically they focus on how a specific research group leveraged the technology to make sense of reams of data. But that sort of pattern recognition isn’t all that AI is good for. In fact, it’s becoming pretty capable of abstract thought. And one place where abstract thought can be helpful is in developing new scientific theories. With that thought in mind, a team of researchers from ESA, Columbia, and the Australian National University (ANU) utilized an AI to come up with scientific hypotheses in astronomy.

