SpaceX’s Starlink satellite system has been in the news lately for both good and ill. The “Mega-constellation” of around 2,800 satellites added another 53 satellites to its roster just last week. But while it might one day provide high-speed internet for the whole of humanity, it is already causing a massive headache for one particular slice of humanity – astronomers. Starlink satellites are reflective due to the solar panels they need to power themselves.
Space News & Blog Articles
In a recent study published in Instrumentation and Methods for Astrophysics, the private space company, Rocket Lab, outlines a plan to send their high-energy Photon spacecraft to Venus in May 2023 with the primary goal of searching for life within the Venusian atmosphere. The planet Venus has become a recent hot topic in the field of astrobiology, which makes the high-energy Photon mission that much more exciting.
Addendum: Today’s launch was scrubbed due to an engine issue that occurred during fueling. The backup date of Sept. 2nd is now targeted.
In the search for extrasolar planets, astronomers and astrobiologists generally pursue a policy of “follow the water.” This comes down to searching for planets that orbit with a star’s circumsolar habitable zone (HZ), where conditions are warm enough that liquid water can flow on its surface. The reason is simple: water is the only known solvent capable of supporting life and is required by all life on Earth. However, since the 1970s, scientists have speculated that there may be a class of rocky planets in our Universe that are completely covered in water.
Because of the orbiters and landers that have studied Mars over the years, scientists have learned that water ice is very likely locked away just under the surface throughout the planet’s mid-latitudes. These regions – especially in the northern hemisphere — are mostly covered with smooth material and scientists suspect ice is just underneath.
In just four days, the inaugural mission of the Artemis Program will lift off from Kennedy Space Center in Florida! Dubbed Artemis I, this mission will see the Space Launch System (SLS) and Orion spacecraft achieve flight together for the first time. The mission will last between 39 and 42 days and consist of the uncrewed Orion flying beyond the Moon, farther than any spaceship has ever traveled, and then looping back around the Moon to return home. This flight, and the crewed Artemis II that will follow, are essentially the dress rehearsal for the long-awaited return to the Moon.
Protoplanetary disks—those nurseries around young stars where planets form—are filled with gas and dust. In particular, many show a lot of carbon monoxide gas. It’s a handy “tracer” to estimate the mass of a cloud, its composition, and even its temperature. It’s also easy to observe. However, astronomers think there should be more of it than they’re observing in many disks. And that prompted a question: where’s the rest of it?
An early – and exciting — science result from the James Webb Space Telescope (JWST) was announced today: the first unambiguous detection of carbon dioxide in the atmosphere of an exoplanet. This is the first detailed evidence for carbon dioxide ever detected in a planet outside our Solar System.
Nichelle Nichols, who blazed a trail for Black actors as Lieutenant Uhura on the original “Star Trek,” never got to go to space while she was alive — but her ashes and her DNA are due to reach the final frontier as early as this year.
Remember New Horizons? That plucky little spacecraft that gave us our first up-close looks at Pluto and Arrokoth? Of course, we do! Well, it’s still out there, traveling deeper into the Kuiper Belt. Just because it finished its primary mission doesn’t mean we’re done with it yet.
When crewed missions begin to travel to Mars for the first time, they will need to be as self-sufficient as possible. Even when Mars and Earth are at the closest points in their orbits to each other every 26 months (known as “Opposition“), it can take six to nine months for a spacecraft to travel there. This makes resupply missions painfully impractical and means astronauts must pack plenty of supplies for the journey. They will also need to grow some of their food and leverage local resources to meet their needs, a process known as In-Situ Resource Utilization (ISRU).
We know the universe is expanding, and we have a pretty good idea of how fast it’s expanding, but we don’t know the rate exactly. That’s because of the different methods we have to measure the rate of cosmic expansion keep giving us slightly different results. It’s a nagging problem that bugs astronomers, so while they have worked to ensure current methods are accurate, they have also looked to new ways to measure cosmic expansion. One of these new ways involves gravitational waves.
In a recent study published in Space Physics, an international team of researchers discuss an in-depth study examining the long-term physiological effects of solar radiation on astronauts with emphasis on future astronauts traveling to Mars, to include steps we can take to help mitigate the risk of such solar radiation exposure. The researchers hailed from the United Arab Emirates, New Zealand, India, United States, Italy, Greece, and Germany, and their study helps us better understand the in-depth, long-term health impacts of astronauts during long-term space missions, specifically to Mars and beyond.
Long before our Sun began to form, stars were dying in our part of the galaxy. One of them exploded as a supernova. The catastrophe created minute grains of dust and the force of the explosion blasted through a nearby cloud of gas and dust. That action seeded the cloud with “alien” materials from the dead star. The shock wave from the supernova also caused the cloud to collapse in on itself to create the Sun. The “leftovers” of the cloud became the planets, moons, rings, comets, and asteroids of our solar system.
Astrophotographer Judy Schmidt (aka. Geckzilla, SpaceGeck) is at it again! Earlier this month, she released a processed image of the Great Barred Spiral Galaxy (NGC 1365). The James Webb Space Telescope (JWST) recently observed this iconic double-barred spiral galaxy, which resulted in the most-detailed look at this galaxy to date. This time, Schmidt shared a series of images via Twitter that provide a closer look at NGC 1365’s core region, a widefield view that shows the galaxy’s long arms, and lovely animation that shows the galaxy in near- and mid-infrared wavelengths.
Northrop Grumman will partner with startup Firefly Aerospace to continue sending cargo to the International Space Station.
This new image taken of the skies above Chile’s Atacama Desert near the European Southern Observatory’s (ESO) La Silla Observatory, shows bright red streaks in the sky known as red sprites. Red sprites are large-scale electrical discharges that occur high above thunderstorm clouds, usually triggered by the discharges of positive lightning between an underlying thundercloud and the ground. However, the red sprites appear high in Earth’s atmosphere, sometimes 50-90 km in altitude.
Okay, so let’s start with the obvious. The big bang is not dead. Recent observations by the James Webb Space Telescope have not disproven the big bang, despite certain popular articles claiming otherwise. If that’s all you needed to hear, then have a great day. That said, the latest Webb observations do reveal some strange and unexpected things about the universe, and if you’d like to know more, keep reading.
NASA’s James Webb Space Telescope is designed to probe the farthest frontiers of the universe, but newly released images of Jupiter prove that the observatory can also bring fresh perspectives to more familiar celestial sights.
It’s difficult to study neutron stars. They are light years away and only about 20 kilometers across. They are also made of the most dense material in the universe. So dense that atomic nuclei merge together to become a complex fluid. For years our understanding of the interiors was based on complex physical models and what little data we could gather from optical telescopes. But that’s starting to change.
In the coming decade, in 2033, NASA and China intend to send astronauts to Mars for the first time in history. This presents numerous challenges, ranging from logistical and technical issues to ensuring that astronauts can deal with waste and have enough food and water for the months-long transit to and from Mars. But of course, there’s also the health and safety of the astronauts, who will be spending months traveling through space where they’ll be exposed to cosmic radiation and microgravity. There are even concerns that after months of exposure to microgravity, astronauts will have trouble adapting to Martian gravity.