A team of scientists using the James Webb Space Telescope have just released the largest image taken by the telescope so far. The image is a mosaic of 690 individual frames taken with the telescope’s Near Infrared Camera (NIRCam) and it covers an area of sky about eight times as large as JWST’s First Deep Field Image released on July 12. And it is absolutely FULL of early galaxies, many never seen before. Additionally, the team may have photographed one of the most distant galaxies yet observed.
Space News & Blog Articles
Meet R136a1, the most mass star known. Located in the Large Magellanic Cloud, it’s a hulking behemoth weighing somewhere between 150 and 200 times the mass of the Sun. Understanding the upper limit of stars helps astronomers peace together everything from the life cycles of stars to the histories of galaxies.
This Fall, the fifth crewed mission (Crew-5) of the NASA Commercial Crew Program will depart for the International Space Station (ISS). This mission will see four astronauts launch from the Kennedy Space Center in Flordia aboard a SpaceX Crew Dragon (atop a Falcon 9 rocket). Once they reach the ISS, they will join the crew of Expedition 67 and conduct science experiments as part of Expedition 68. The mission commander of this flight, Nicole Aunapu Mann, is a naval aviator and test pilot with a distinguished military career. She will also be the first Indigenous woman ever to go to space!
We have discovered thousands of exoplanets in recent years. Most have them have been discovered by the transit method, where an optical telescope measures the brightness of a star over time. If the star dips very slightly in brightness, it could indicate that a planet has passed in front of it, blocking some of the light. The transit method is a powerful tool, but it has limitations. Not the least of which is that the planet must pass between us and its star for us to detect it. The transit method also relies on optical telescopes. But a new method could allow astronomers to detect exoplanets using radio telescopes.
The Orion Nebula is a giant cloud of gas and dust that spans more than 20,000 times the size of our own solar system. It one of the closest active star-forming regions to Earth, and is therefore one of the most observed and photographed objects in the night sky. The venerable Hubble Space Telescope has focused on the Orion Nebula many times, peering into giant cavities in the hazy gas, and at one point, Hubble took 520 images to create a giant mosaic of this spellbinding nebula.
There’s an ocean of human-made garbage floating through Earth’s seas. From plastic straws to beverage bottles and food wrappers, the ocean waters are this planet’s fastest-growing junkyard. Some of the plastic gets ground into little beads, and ends up in the food chain, with humans at the top. For that reason, and many others, the European Space Agency is tracking ocean-bound plastics through the auspices of the MARLISAT project. It’s one of 25 efforts created to identify and trace marine litter as it moves through the world’s waterways. The ultimate goal is to help countries reduce ocean litter, particularly plastics.
Lunar Rocks Have Earth's Noble Gases Trapped Inside. More Evidence That the Moon Came From the Earth
Piecing together the history of the Solar System from the traces left behind isn’t easy. Bit by bit, however, we’re working it out. This month, new research examining the composition of lunar meteorites offers compelling evidence that the Moon and the Earth were formed from the same material, perhaps in the aftermath of a cataclysmic collision some 4.5 billion years ago.
In our solar system, we have two types of planets. Small, warm, rocky worlds populate the inner region, while the outer region has cold gas giants. Intuitively this makes a lot of sense. When the solar system was forming, the Sun’s light and heat must have pushed much of the gas toward the outer system, leaving heavier dust and rock to form the inner worlds. Giants could only grow in the cold, dark outer solar system. But we now know our solar system is more the exception than the rule. Many star systems have large gas planets that orbit close to their stars. These hot Jupiters and hot Neptunes are unlike anything in our solar system, and astronomers are keen to understand what they may be like.
James Webb delivers scientific results, SLS and Starship go closer to their maiden flights, remote surgery robot is going to the ISS, Perseverance continues to find weird stuff on Mars, and Hubble is still going strong. All this and more in this week’s episode of Space Bites. All this and more in this week’s episode of Space Bites.
Climate change is a real problem. Human caused outputs of greenhouse gases like carbon dioxide and methane are the main driver of an unprecedented rise in global average temperatures at a speed never before seen in the Earth’s geologic record. The problem is so bad that any attempts to mitigate greenhouse gas emissions may be too little and too late. And so a team based at the Massachusetts Institute of Technology have proposed a radical new solution: bubbles…in space.
When you look at a region of the sky where stars are born, you see a cloud of gas and dust and a bunch of stars. It’s really a beautiful sight. In most places, the stars all end up being about the same mass. That mass is probably the most important factor you want to know about it. It directs how long the star will live and what its future will be like. But, what determines its mass and the mass of its siblings in a stellar nursery? Is there some governing force that tells them how massive they’ll be? It turns out that the stars do it for themselves.
The early moments of the universe were turbulent and filled with hot and dense matter. Fluctuations in the early universe could have been great enough that stellar-mass pockets of matter collapsed under their own weight to create primordial black holes. Although we’ve never detected these small black holes, they could have played a vital role in cosmic evolution, perhaps growing into the supermassive black holes we see today. A new study shows how this could work, but also finds the process is complicated.
Betelgeuse, the big reddish star that is the second brightest point in the constellation Orion (after Rigel), has been puzzling astronomers for years. Starting in October 2019, Belegeuse began to dim considerably, eventually reaching 1/3rd of its normal brightness a few months later. And then, just as mysteriously, it began to brighten again and (as of February 2022) has remained in a normal brightness range. The most likely reason appeared to be a circumstellar dust cloud rather than any changes in the star’s intrinsic brightness.
Our Sun is doomed. Billions of years from now, the Sun will deplete its hydrogen fuel and swell to a red giant before becoming a white dwarf. It’s a well-known story, and one astronomers have understood for decades. Now, thanks to the latest data from Gaia, we know the Sun’s future in much greater detail.
In a recent study submitted to Earth and Planetary Astrophysics, a team of researchers from Yale University investigated how to identify impact craters that may have been created by Interstellar Objects (ISOs). This study is intriguing as the examination of ISOs has gained notable interest throughout the scientific community since the discoveries and subsequent research of ‘Oumuamua and Comet 2I/Borisov in 2017 and 2019, respectively. In their paper, the Yale researchers discussed how the volume of impact melt within fixed-diameter craters could be a possible pathway for recognizing ISO craters, as higher velocity impacts produce greater volumes of impact melt.
When big spiral galaxies collide, they don’t end up as one really big spiral. Instead, they create a humongous elliptical galaxy. That’s the fate awaiting the Andromeda Galaxy and our Milky Way. They’ll tangle in a galactic dance starting in a few million years. Want to know what it’s going to look like when the action starts? The Gemini North telescope in Hawai’i just released a stunning image of two galaxies like ours tangling it up. These are NGC 4568 and NGC 4567 and their interaction provides a sneak peek at our galactic neighborhood in the distant future.
According to the most widely-accepted theory by astronomers, planetary systems begin as massive clouds of gas and dust (aka. a nebula) that experience gravitational collapse at the center to form new stars. The remaining matter in the system forms a “circumplanetary disk” around the star, which gradually accretes to form young planets. Studying disks in the earliest stages of planetary formation could help answer some hard questions about how the Solar System formed over 4.5 billion years ago.
Engineers and technicians at the SpaceX Starbase in Boca Chica, Texas, are working on getting the fully-stacked Starship and Super Heavy prototypes ready for their orbital launch test. The most recent step consisted of a static fire test with the BN7 Super Heavy prototype, where the booster was placed on the orbital launch pad and fired one of its thirty-three Raptor 2 engines. News of the test was shared via SpaceX’s official Twitter account and showed the BN7 blasting the launch pad, leading many to wonder what the orbital launch test will look like!
There’s little doubt that we live in a new Space Age, defined by increasing access, greater competition, and the commercial space industry. The titans of this industry are well known and have even become household names. There are old warhorses like Lockheed Martin, Boeing, Northrop Grumman, and United Launch Alliance and fast-rising stars like SpaceX, Blue Origin, Sierra Nevada, Virgin Galactic, and others. But New Zealand and California-based company Rocket Lab has also made a name for itself in recent years, moving from low-cost expendable rocket launches to reusable rockets.