NASA’s Mars Sample Return Mission is inching closer and closer. The overall mission architecture just hit a new milestone when Perseverance collected the first sample that will be sent back. But what happens once that sample actually gets here? NASA and its partner, ESA, are still working on that, but recently they released a fact sheet that covers what will happen during the first stage of that process – returning to the ground.
Space News & Blog Articles
In June 2027, NASA will launch the long-awaited Dragonfly mission toward Saturn’s largest moon, Titan. By 2034, the 450 kg (990-lbs) nuclear-powered quadcopter will touch down at its target landing site (the Selk crater region) and begin searching Titan’s surface and atmosphere to learn more about this curious satellite. In particular, the mission will investigate the moon’s prebiotic chemistry, active methane cycle, and organic environment. These goals underpin Dragonfly’s main objective, which is to search for possible signs of life (aka. “biosignatures”) on Titan.
Humanity moved an asteroid on purpose for the first time in history. Juno flies past Jupiter’s moon Europa. A possible mission to boost Hubble, and a mysterious blob is orbiting Milky Way’s supermassive black hole.
In a recent study published in Monthly Notices of the Royal Astronomical Society, an international team of researchers led by Stanford University have produced the first computer-generated 3D model of the Cat’s Eye Nebula, which unveiled a symmetric pair of rings that enclose the outer shell of the nebula. This study holds the potential for helping us better understanding the nebula’s makeup and how it formed, as the symmetric rings provides clues that they were formed from a precessing jet, which produces strong confirmation that a binary star exists at the nebula’s center.
We recently examined how and why Jupiter’s moon, Europa, could answer the longstanding question: Are we alone? While this small icy world gives plenty of reasons to believe why we could—and should—find life within its watery depths, it turns out our solar system is home to a myriad of places where we might find life. Much like how the Voyager missions gave us the first hints of an interior ocean swirling beneath Europa’s outer icy shell, it was only fitting that Voyager 1 also gave us the first hints of the potential for life on Saturn’s largest moon, Titan, as well.
Mars exploration has been ongoing for decades at this point, and some regions of the planet have become more interesting than others. Of particular interest is a basin known as Utopia Planitia. It was the site of the Viking-2 landing, one of the first-ever successful missions to Mars. From data collected during that mission, scientists developed a theory that the crater that formed Utopia might have been the site of an ancient ocean. New results from China’s Zhurong rover point to an even more exciting past – repeated flooding.
Kessler syndrome seems to be a growing fear for those interested in space exploration. The condition where numerous non-functional pieces of junk block access to orbit appears to be inching closer to reality, spurred on by weekly news reports of dozens of more satellites launching that will eventually become precisely that kind of obsolete space junk. But that won’t happen if the US’s Federal Communications Commission (FCC) has anything to do with it – a new rule the commission adopted will require companies to deorbit their unused satellites in less than five years after decommissioning.
3D printing will be an absolutely critical technology as space exploration starts to take off. Initially, it will be impossible to individually manufacture every tool needed to create and sustain infrastructure in space. The only option will be to build some of those tools in space itself, in no small part, because it could potentially take months or even years to get to any area where the tools are manufactured. So any tool that can be created in situ is the best option available for early space explorers. Using materials like Martian regolith to 3D print those tools has long been an area of ongoing research. Now a team from Washington State University has successfully printed some tools using simulated Martian regolith, and they seem to work – up to a point.
There’s a star system out there with three super-Earth planets and two super-Mercuries. Super-Earths are fairly familiar types of exoplanets, but super-Mercuries are rare. Those are planets with the same composition as our own Mercury, but larger and denser. Yet, here’s HD 23472, showing off two of eight known super-Mercuries in the galaxy.
Astronomers have been assessing a new machine learning algorithm to determine how reliable it is for finding gravitational lenses hidden in images from all sky surveys. This type of AI was used to find about 5,000 potential gravitational lenses, which needed to be confirmed. Using spectroscopy for confirmation, the international team has now determined the technique has a whopping 88% success rate, which means this new tool could be used to find thousands more of these magical quirks of physics.
Here’s a sharper view of Dimorphos, the small asteroid moonlet that the DART (Double Asteroid Redirection Test) spacecraft intentionally crashed into. Eydeet on Imgur created a higher resolution image of Dimorphos by stacking the last few images received from the spacecraft before impact.
When you imagine the collision of galaxies, you probably think of something violent and transformational. Spiral arms ripped apart, stars colliding, cats and dogs living together, mass hysteria. The reality is much less dramatic. As a recent study shows, our galaxy is in a collision right now.
Astronomers studying a stellar cluster within the Small Magellanic Cloud (SMC) have found young stars spiraling in towards the center of the cluster. The cluster, NGC 346, is an open cluster embedded within a glowing cloud of gas, which is typical of stellar nurseries – places where new stars are formed. The outer spiral arm of this star forming region appears to be funneling gas, dust and new stars into the center, which researchers describe as an efficient way to fuel the birth of new stars.
Over the course of a brief two-hour opportunity, NASA’s Juno spacecraft captured a rare close look at Europa, an ice-covered moon of Jupiter that’s thought to harbor a hidden ocean — and perhaps an extraterrestrial strain of marine life.
It only takes a quick look at the Moon to see its impact-beaten surface. There are craters everywhere. Some of those impact sites apparently date back to the same time some very large asteroids were whacking Earth. One of them formed Chixculub Crater under the Yucatan Peninsula. That impact set in motion catastrophic events that wiped out much of life on Earth, including the dinosaurs.
What happens when you whack a little asteroid with an even littler spacecraft? People around the world watched on the 26th of September when the DART mission smashed into the side of Dimorphos. This tiny worldlet is a companion asteroid to Didymos. It was the world’s first test of the kinetic impact technique, using a spacecraft to deflect an asteroid by modifying its orbit. Amateur observer networks and professional observatories tracked the meetup from the ground. In a first, both Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST) took simultaneous images and data.
NASA and SpaceX say they’ll conduct a feasibility study into a plan to reboost the 32-year-old Hubble Space Telescope to a more sustainable orbit, potentially at little or no cost to NASA.
On September 26th, at 23:14 UTC (07:14 PM EST; 04:14 PM PST), NASA’s Double Asteroid Redirect Test (DART) spacecraft successfully struck the 160-meter (525 ft) moonlet Dimorphos that orbits the larger Didymos asteroid. The event was live-streamed all around the world and showed footage from DART’s Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO) as it rapidly approached Dimorphos. In the last few seconds, DART was close enough that individual boulders could be seen on the moonlet’s surface.
How great are wheels, really? Wheels need axles. Suspension. Power of some kind. And roads, or at least swaths of relatively flat and stable terrain. Then you need to maintain all of it. Because of their cost many civilizations across human history, who knew all about wheels and axles, didn’t bother using them for transportation. Another way to look at it – much of human technology mimics nature. Of the simple machines, levers, inclined planes, wedges, and even screws are observed in nature. Why not the wheel?
Scientists at the Shanghai Academy of Spaceflight Technology (SAST) have devised an ingenious way to combat the growing problem of space debris. The team fitted a drag sail to a Long March 2 rocket and successfully launched it in July this year. Rocket launches often leave discarded booster stages in low-earth orbit, adding to the pollution of near-earth space. The pilot testing for the sail came as a surprise to many space agencies when, a day after the rocket’s launch, the 25 square meters deorbiting sail was unfolded.
A NASA scientist is finding newly formed lakes in Alaska that are belching greenhouse gases at a high rate. The main one is methane, a gas many people use in their natural gas-fueled grills. She’s tracking these emissions in one of Earth’s most remote regions—the Arctic. It has millions of lakes, many of them hundreds or thousands of years old. But, only the youngest of them are releasing high amounts of methane. And that is due to the effects of climate change on these delicate environments.