The JWST is grabbing headlines and eyeballs as its mission gains momentum. The telescope recently imaged M74 (NGC 628) with its Mid-Infrared Instrument (MIRI.) Judy Schmidt, a well-known amateur astronomy image processor, has worked on the image to bring out more detail.
Space News & Blog Articles
When it comes to astronomy, the more instruments watching the sky, the better. Which is why it has been so frustrating that the world’s rising superpower – China – has long lacked focus on space-science missions. In recent years, with some notable exceptions, China’s space agency has focused on lunar exploration and human spaceflight, as well as some remote monitoring capabilities, leaving the technical know-how of arguably the world’s second more capable country on the sidelines when it comes to collecting space science data. Now, a team led by Jian Ge of the Shanghai Astronomical Observatory has suggested the most ambitious Chinese-led space science mission to date. And it plans to search for one of the holy grails of current astronomy research – an exoplanet like Earth.
What happens when a massive star dies? Conventional wisdom (and observational evidence) say that it can collapse to form a “stellar-mass” black hole. Astronomers detect black holes by the X-ray emissions they emit.
The world is still reeling from the release of the James Webb Space Telescope‘s (JWST) first images. These provided a comprehensive overview of the kind of science operations that Webb will conduct over its 20-year mission. They included the most sensitive and detailed look at some iconic astronomical objects, spectra from an exoplanet atmosphere, and a deep field view of some of the most distant galaxies in the Universe. Since their release, we’ve also been treated to glimpses of objects in the Solar System captured by Webb‘s infrared instruments.
NASA is reviewing its mission to visit the asteroid 16 Psyche. The Administration has convened a 15-member review board to examine the mission and its failure to meet the scheduled 2022 launch. The review began on July 19, and the board will present their findings to NASA and JPL in late September.
A team of astronomers studied brown dwarfs to figure out how hot exoplanets form clouds of sand. They found that sand clouds can only exist in a narrow range of temperatures.
Way out there in space is a class of objects called blazars. Think of them as extreme particle accelerators, able to marshall energies a million times stronger than the Large Hadron Collider in Switzerland. It turns out they’re the culprits in one of the great astrophysical mysteries: what creates and propels neutrinos across the universe at blazingly fast speeds? It turns out that the answer’s been there all along: blazars pump out neutrinos and cosmic rays. That’s the conclusion a group of astronomers led by Dr. Sara Buson of Universität Wurzburg in Germany came to as they studied data from a very unique facility here on Earth: the IceCube Neutrino Observatory in Antarctica.
A team of physicists have used a pair of vibrating rods to measure the gravitational constant to incredibly fine precision. While the new technique has relatively high uncertainty, they hope that future improvements will provide a new pathway to nailing down this elusive constant.
The future can arrive in sudden bursts. What seems a long way off can suddenly jump into view, especially when technology is involved. That might be true of self-replicating machines. Will we combine 3D printing with in-situ resource utilization to build self-replicating space probes?
Stars don’t usually evolve fast enough for humans to notice them change within one lifetime. Even a hundred lifetimes won’t do – astronomical processes are just too slow. But not always. There are some phases of stellar evolution that happen quickly, and when they do, they can be tracked. A new paper posted to ArXiv last week uses astronomical observations found in ancient Roman texts, medieval astronomical logs, and manuscripts from China’s Han Dynasty to trace the recent evolution of several bright stars, including red supergiant Antares, and Betelgeuse: one of the most dynamic stars in our sky. With observations from across the historical record, the paper suggests that Betelgeuse may have just recently passed through the ‘Hertzsprung gap,’ the transitional phase between a main sequence star and its current classification as a red supergiant.
Astronomers have proposed a concept mission to fly a neutrino observatory into orbit around the Sun to get a better picture of what’s happening in the Sun’s core.
The Space Elevator is one of those ideas that seems to have an endless supply of lives. Originally proposed about a century ago, this concept calls for a tether of supermaterial that connects a station in orbit to Earth’s surface. Our planet’s rotation would keep this tether taught, and a system of “climbers” would transport people and payloads to and from space. The engineering challenges and costs associated with such a structure have always been enormous. But every generation or so, new research comes along that causes engineers and space agencies to reevaluate the concept.
According to a recent report by Euronews, the controversial head of Roscosmos (Dmitri Rogozin) has been dismissed from his position. For those associated with space exploration and the global space industry, Rogozin is something of a household name. Since 2018, he has led Russia’s space program and established a reputation for inflammatory statements and anti-Western bluster, especially where Russia’s invasion of Ukraine, U.S., and European sanctions are concerned. His dismissal was part of a reshuffle ordered on Friday, July 15th, by Russian President Vladimir Putin.
Humanity seems destined to expand into the Solar System. What exactly that looks like, and how difficult and tumultuous the endeavour might be, is wide open to speculation. But there are some undeniable facts attached to the prospect.
Here’s the best evidence I’ve ever seen for water on Mars: NASA’s Perseverance rover came across a tangled mess of string on Mars, which looks like snarled fishing line left behind by a frustrated angler. Where there’s fishing, there’s gotta be water, right?
A team of astronomers using the Chinese Insight-HXMT x-ray telescope have made a direct measurement of the strongest magnetic field in the known universe. The magnetic field belongs to a magnetar currently in the process of cannibalizing an orbiting companion.
Even more pictures from James Webb Space Telescope, China’s planning a mission to Neptune, SpaceX’s Booster 7 suffers from an explosion, black holes are messy eaters, going under Europa’s ice crust and more.
Will we discover simple life somewhere? Maybe on Enceladus or Europa in our Solar System, or further away on an exoplanet? As we get more proficient at exploring our Solar System and studying exoplanets, the prospect of finding some simple life is moving out of the creative realm of science fiction and into concrete mission planning.
After the ‘big reveal’ earlier this week of the James Webb Space Telescope’s first full color images and spectra of the universe, the science team has now released data from closer to home. One stunning shot includes Jupiter and its moons, and there are also data from several asteroids. These latest data are actually just engineering images, designed to test JWST’s ability to track solar system targets, as well as test out how the team can produce images from the data. The quality and detail in these test images have excited the mission scientists.
Living and working in space for extended periods of time presents a number of challenges. These include radiation, as locations beyond Earth’s protective magnetosphere are exposed to greater levels of solar and cosmic rays. There’s also the need for self-sufficiency since Lunar or Martian bases are too far to rely on regular resupply missions like the International Space Station (ISS). Last, there’s the issue of low gravity, which is especially pressing for long-term missions and habitats beyond Earth. If humanity’s future truly lies in space, we must devise solutions to this issue in advance.
A team of astronomers have used the ALMA telescope to find a slowly-rotating galaxy in the early universe. That galaxy is the youngest ever found with a measured rotation, and it’s much slower than present-day galaxies.