When Oumuamua, the first interstellar object ever observed passing through the Solar System, was discovered in 2017, it exhibited some unexpected properties that left astronomers scratching their heads. Its elongated shape, lack of a coma, and the fact that it changed its trajectory were all surprising, leading to several competing theories about its origin: was it a hydrogen iceberg exhibiting outgassing, or maybe an extraterrestrial solar sail (sorry folks, not likely) on a deep-space journey? We may never know the answer, because Oumuamua was moving too fast, and was observed too late, to get a good look.
Space News & Blog Articles
Between 2021 and 2024, the James Webb (JWST) and Nancy Grace Roman (RST) space telescopes will be launched to space. As the successors to multiple observatories (like Hubble, Kepler, Spitzer, and others), these missions will carry out some of the most ambitious astronomical surveys ever mounted. This will range from the discovery and characterization of extrasolar planets to investigating the mysteries of Dark Matter and Dark Energy.
The interior of a neutron star is perhaps the strangest state of matter in the universe. The material is squeezed so tightly that atoms collapse into a sea of nuclear material. We still aren’t sure whether nucleons maintain their integrity in this state, or whether they dissolve into quark matter. To really understand neutron star matter we need to pull it apart to see how it works and to do that takes a black hole. This is why astronomers are excited about the recent discovery of not one, but two mergers between a neutron star and a black hole.
Remember the stunning video of the Perseverance rover landing on Mars? The Chinese National Space Administration (CNSA) has now released similar video footage from its Zhurong rover, including the sounds recorded as it plummeted through the Martian atmosphere on its way to landing in Utopia Planitia. The CNSA also released sounds of the rover driving off the landing platform.
New images from orbit and from Mars’ surface show the Zhurong rover on the move. China’s National Space Administration (CNSA) released new pictures and video this week, and NASA’s Mars Reconnaissance Orbiter has followed the rover’s movements from above.
There’s an old adage that says there is ‘nothing new under the Sun…’ but that doesn’t apply when it comes to solar eclipse science.
For over thirty years, the Hubble Space Telescope has been in continuous operation in Low Earth Orbit (LEO) and revealing never-before-seen aspects of the Universe. In addition to capturing breathtaking images of our Solar System and discovering extrasolar planets, Hubble also probed the deepest reaches of time and space, causing astrophysicists to revise many of their previously-held theories about the cosmos.
Earth is perfectly suited for organic life. It stands to reason then that similar worlds orbiting distant stars might also be rich with life. But proving it will be a challenge. One of the better ways to discover extraterrestrial life will be to study the atmospheres of inhabited exoplanets, but Earth is fairly small for a planet and has a thin atmosphere compared to larger worlds. It will be much easier to study the atmospheres of gas planets, but could such worlds harbor life? A new paper in Universe argues it could.
For centuries, human beings have speculated about the existence of planetary systems (much like our own) orbiting other stars. However, it has only been in the past few decades that scientists have been able to detect and study these distant worlds. To date, astronomers have used various methods to confirm the existence of 4,422 extrasolar planets in 3,280 star systems, with an additional 7,445 candidates awaiting confirmation.
After months of anticipation, U.S. intelligence experts have released a report citing 18 incidents since 2004 in which unidentified flying objects — or unidentified aerial phenomena, to use the Pentagon’s term — appeared to demonstrate breakthrough technologies.
Gravitational-wave detectors have been a part of astronomy for several years now, and they’ve given us a wealth of information about black holes and what happens when they merge. Gravitational-wave astronomy is still in its infancy, and we are still very limited in the type of gravitational waves we can observe. But that could change soon.
On Thursday, June 17th, China took another major step in its ongoing drive to become a superpower in space. Just two months after the core module of the Tiangong space station (literally, “Heavenly Palace”) was sent to orbit, the three astronauts that will be the station’s first crew launched to space. The mission, Shenzhou 12, lifted off atop a Long March-2F rocket at 09:22 p.m. on Wednesday evening local time (09:22 a.m. EDT; 06:22 a.m. PDT) from the Jiuquan launch center in the Gobi desert.
Virgin Galactic says it’s received the Federal Aviation Administration’s go-ahead to fly customers on its SpaceShipTwo rocket plane, marking a significant step in a commercial rollout that could also feature dueling space billionaires.
It’s difficult to do radio astronomy on Earth, and it’s getting harder every day. Our everyday reliance on radio technology means that radio interference is a constant challenge, even in remote areas. And for some wavelengths even the Earth’s atmosphere is a problem, absorbing or scattering radio light so that Earth-based telescopes can’t observe these wavelengths well. To overcome these challenges, astronomers have proposed putting a radio telescope on the far side of the Moon.
To date, astronomers have confirmed the existence of 4,422 extrasolar planets in 3,280 star systems, with an additional 7,445 candidates awaiting confirmation. Of these, only a small fraction (165) have been terrestrial (aka. rocky) in nature and comparable in size to Earth – i.e., not “Super-Earths.” And even less have been found that are orbiting within their parent star’s circumsolar habitable zone (HZ).
The Planetary Society’s crowdfunded solar-sailing CubeSat, LightSail 2, launched on June 25th 2019, and two years later the mission is still going strong. A pioneering technology demonstration of solar sail capability, LightSail 2 uses the gentle push of photons from the Sun to maneuver and adjust its orbital trajectory. Within months of its launch, LightSail 2 had already been declared a success, breaking new ground and expanding the possibilities for future spacecraft propulsion systems. Since then, it’s gone on to test the limits of solar sailing in an ongoing extended mission.