The universe is littered with supermassive black holes. There’s one a mere 30,000 light-years away in the center of the Milky Way. Most galaxies have one, and some of them are more massive than a billion stars. We know that many supermassive black holes formed early in the universe. For example, the quasar TON 618 is powered by a 66 billion solar mass black hole. Since its light travels nearly 11 billion years to reach us, TON 618 was already huge when the universe was just a few billion years old. So how did these black holes grow so massive so quickly?
Space News & Blog Articles
Two spacecraft made historic flybys of Venus last week, and both sent back sci-fi-type views of the mysterious, cloud-shrouded planet.
In 1905 Albert Einstein wrote four groundbreaking papers on quantum theory and relativity. It became known as Einstein’s annus mirabilis or wonderous year. One was on brownian motion, one earned him the Nobel prize in 1921, and one outlined the foundations of special relativity. But it’s Einstein’s last 1905 paper that is the most unexpected.
Over the past few weeks, there was quite a bit of excitement in the air at the NASA Jet Propulsion Laboratory in Pasadena, California, where mission controllers were prepping the Perseverance rover to acquire its first sample from the Martian surface. This mission milestone would be the culmination of years of hard work by a team of over 90 dedicated scientists and engineers.
One of the reasons the ISS is still alive and kicking is that it offers a unique environment for testing that is available nowhere, either on the Earth or off of it. Plenty of science experiments want to take advantage of that uniqueness. This week, a fresh crop of experiments was delivered to the ISS aboard a Northrop Grumman Cygnus resupply craft. They range from 3D printers to a high school science experiment with mold, and now they each have the opportunity to make use of the ISS’s microgravity environment.
As any good project manager will tell you, goals are necessary to complete any successful project. The more audacious the goal, the more potentially successful the project will be. But bigger goals are harder to hit, leading to an increased chance of failure. So when the team behind one of NASA’s most unique missions released a list of goals this week, the space exploration world took notice. One thing is clear – Dragonfly will not lack ambition.
Asteroid Bennu is one of the two most hazardous known asteroids in our Solar System. Luckily, the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) spacecraft orbited Bennu for more than two years and gathered data that has allowed scientists to better understand the asteroid’s future orbit, trajectory and Earth-impact probability, and even rule out some future impact possibilities.
As we all anticipate the launch of the James Webb Space Telescope (JWST) later this year (hopefully), LEGO designers are hoping for a “launch” of their own. A new LEGO design of JWST is currently gathering supporters on the LEGO Ideas website. If it gets enough support, LEGO will review it and possibly create it.
When it comes to finding exoplanets, size matters, but so does weight. The larger and heavier the planet, the more likely they will be discovered by the current crop of telescopes. Both the techniques to find exoplanets and the telescopes using those techniques are biased toward larger, heavier planets. So when even the current crop of telescopes manages to find one that is about half the mass of Venus, it is cause for celebration. That is precisely the size of the planet a team from the European Southern Observatory’s Very Large Telescope has found orbiting a star called L98-59.
Photos can’t do some places justice – nor can any level of sophisticated remote sensing. That seems to be the case for Gale Crater. Curiosity has been wandering around the crater for almost the last nine years. Scientists thought Gale crater was an old lakebed, and it was specifically chosen as a landing site to allow Curiosity to collect samples from such a lakebed. But new research from scientists at the University of Hong Kong shows that most likely, the samples Curiosity has been analyzing during its sojourn didn’t actually form in a lake.
In this series we are exploring the weird and wonderful world of astronomy jargon! Adjust your eyeglasses to read about today’s topic: adaptive optics!
If you’re a fan of the Search for Extraterrestrial Intelligence (SETI) and the Fermi Paradox, then it’s likely you’ve heard of a concept known as the Great Filter. In brief, it states that life in the Universe may be doomed to extinction, either as a result of cataclysmic events or due to circumstances of its own making (i.e., nuclear war, climate change, etc.) In recent years, it has been the subject of a lot of talk and speculation, and not just in academic circles.
Our Sun is about 4.6 billion years old. We know that from models of Sun-like stars, as well as through our observations of other stars of similar mass. We know that the Sun has grown hotter over time, and we know that in about 5 billion years it will become a red giant star before ending its life as a white dwarf. But there are many things about the Sun’s history that we don’t understand. How active was it in its youth? What properties of the young Sun allowed life to form on Earth billions of years ago?
When the poet Horace said “We are but dust and shadow”, he probably didn’t think that dust itself could create a shadow. But it can, and that shadow can obscure even some of the most powerful explosions in the universe. At least that’s the finding from new research from an international team using data from the recently retired Spitzer telescope. It turns out dust in far away galaxies can obscure supernovas.
In this series we are exploring the weird and wonderful world of astronomy jargon! It’s easy to measure your interest in today’s topic: the astronomical unit!
As a field, the Search for Extraterrestrial Intelligence suffers from some rather significant constraints. Aside from the uncertainty involved (e.g., is there life beyond Earth we can actually communicate with?), there are the limitations imposed by technology and the very nature of space and time. For instance, scientists are forced to contend with the possibility that by the time a message is received by an intelligent species, the civilization that sent it will be long dead.
With all the news recently about relatively young rocket companies successfully flinging their founders and some actual astronauts into space, it might be surprising that the rocket company with the most experience of all still hasn’t gotten its flagship new rocket off the ground with people yet. And after yet another delay, there is now no firm date for the launch of Boeing’s Starliner.
The Perseids, a rare eruption of nova RS Ophiuchi and a challenging dawn comet round out an amazing week of skywatching.
In this series we are exploring the weird and wonderful world of astronomy jargon! You probably don’t know how close you are to today’s topic: parallax!
On July 20th, 2021, NASA’s Juno spacecraft conducted a flyby of Jupiter’s (and the Solar System’s) largest moon, Ganymede. This close pass was performed as part of the orbiter’s thirty-fourth orbit of the gas giant (Perijove 34), which saw the probe come within 50,109 km (31,136 mi) of the moon’s surface. The mission team took this opportunity to capture images of Ganymede’s using Juno’s Jovian Infrared Auroral Mapper (JIRAM).
In this series we are exploring the weird and wonderful world of astronomy jargon! Hang on to your magnetic hats, because today’s topic is magnetars!