Sometimes simple and elegant solutions are all that is needed to solve a problem. One problem that was searching for a solution was how to track microplastics. These small particles of plastics are what results after the sun and friction (such as ocean waves) break down larger plastic objects. They have become a huge problem in the ocean, wreaking havoc on ecosystems and their constituent organisms. Now, a team from the University of Michigan have used data originally collected to monitor hurricanes to try to track microplastics, potentially helping to reign in a problem that threatens to engulf the world’s oceans.
Space News & Blog Articles
Certain parts of the galaxy are more magical than others. There are barren wastelands where barely a particle strays through occasionally, and there are fantastical nebulae that can literally light up the sky. But beyond their good looks, those nebulae hold secrets to understanding some of the most important features of any galaxy – stars. Now, for the first time, a team from the University of Maryland managed to capture a high resolution image of one of the most active star-forming regions in our part of the galaxy. Data from that image are not only spectacular, but can illuminate the details of the star formation process.
In Australia and South Africa, there are a series of radio telescopes that will be soon joined by a number of newly-constructed facilities to form the Square Kilometer Array (SKA). Once established, the SKA will have a collecting area that measures a million square meters (close to 2 million square yards). It will also be 50 times more sensitive than any radio telescope currently in operation, and be able to conduct surveys ten thousand times faster.
One of the hardest things to reconcile in science is when new data either complicates or refutes previously findings. It’s even more difficult when those findings were widely publicized and heralded around the community. But that is how science works – the theories must fit the data. So when a team from JPL analyzed data from Mars Express about the Martian South Pole, they realized the findings announced in 2018 about subsurface lakes on Mars might have been more fraught than they had originally thought.
Space exploration is driven by technology – sometimes literally in the case of propulsion technologies. Solar sails are one of those propulsion technologies that has been getting a lot of attention lately. They have some obvious advantages, such as not requiring fuel, and their ability to last almost indefinitely. But they have some disadvantages too, not the least of which is how difficult they are to deploy in space. Now, a team from NASA’s Langley Research Center has developed a novel time of composite boom that they believe can help solve that weakness of solar sails, and they have a technology demonstration mission coming up next year to prove it.
Planet formation is notoriously difficult to study. Not only does the process take millions of years, making it impossible to observe in real time, there are myriad factors that play into it, making it difficult to distinguish cause and effect. What we do know is that planets form from features known as protoplanetary disks, which are made up of gas and dust surrounding young stars. And now a team using ALMA have found a star system that has a protoplanetary disk and enough variability to help them nail down some details of how exactly the process of planet formation works.
On its own, a black hole is remarkably easy to describe. The only observable properties a black hole has are its mass, its electric charge (usually zero), and its rotation, or spin. It doesn’t matter how a black hole forms. In the end, all black holes have the same general structure. Which is odd when you think about it. Throw enough iron and rock together and you get a planet. Throw together hydrogen and helium, and you can make a star. But you could throw together grass cuttings, bubble gum, and old Harry Potter books, and you would get the same kind of black hole that you’d get if you just used pure hydrogen.
Ever since 1971, when the Mariner 9 probe surveyed the surface of Mars, scientists have theorized that there might be subsurface ice beneath the southern polar ice cap on Mars. In 2004, the ESA’s Mars Express orbiter further confirmed this theory when its Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument detected what looked like water ice at a depth of 3.7 km (2.3 mi) beneath the surface.
For decades, scientists engaged in the search for life in the Universe (aka. astrobiology) have focused on searching for life on other Earth-like planets. These included terrestrial (aka. rocky) planets beyond our Solar System (extrasolar planets) and ones here at home. Beyond Earth, Mars is considered to be the most habitable planet next to Earth, and scientists have also theorized that life could exist (in microbial form) in the cloud tops of Venus.
Aim for the Center
The Milky Way is 13 BILLION years old. Some of our Galaxy’s oldest stars were born near the beginning of the Universe itself. During all these eons of time, we know at least one technological civilization has been born – US!
Things are not looking very good for the Hubble Space Telescope right now. On Sunday, June 13th, the telescope’s payload computer suddenly stopped working, prompting the main computer to put the telescope into safe mode. While the telescope itself and its science instruments remain in working order, science operations have been suspended until the operations team can figure out how to get the payload computer back online.
When Oumuamua, the first interstellar object ever observed passing through the Solar System, was discovered in 2017, it exhibited some unexpected properties that left astronomers scratching their heads. Its elongated shape, lack of a coma, and the fact that it changed its trajectory were all surprising, leading to several competing theories about its origin: was it a hydrogen iceberg exhibiting outgassing, or maybe an extraterrestrial solar sail (sorry folks, not likely) on a deep-space journey? We may never know the answer, because Oumuamua was moving too fast, and was observed too late, to get a good look.
Between 2021 and 2024, the James Webb (JWST) and Nancy Grace Roman (RST) space telescopes will be launched to space. As the successors to multiple observatories (like Hubble, Kepler, Spitzer, and others), these missions will carry out some of the most ambitious astronomical surveys ever mounted. This will range from the discovery and characterization of extrasolar planets to investigating the mysteries of Dark Matter and Dark Energy.
The interior of a neutron star is perhaps the strangest state of matter in the universe. The material is squeezed so tightly that atoms collapse into a sea of nuclear material. We still aren’t sure whether nucleons maintain their integrity in this state, or whether they dissolve into quark matter. To really understand neutron star matter we need to pull it apart to see how it works and to do that takes a black hole. This is why astronomers are excited about the recent discovery of not one, but two mergers between a neutron star and a black hole.
Remember the stunning video of the Perseverance rover landing on Mars? The Chinese National Space Administration (CNSA) has now released similar video footage from its Zhurong rover, including the sounds recorded as it plummeted through the Martian atmosphere on its way to landing in Utopia Planitia. The CNSA also released sounds of the rover driving off the landing platform.
New images from orbit and from Mars’ surface show the Zhurong rover on the move. China’s National Space Administration (CNSA) released new pictures and video this week, and NASA’s Mars Reconnaissance Orbiter has followed the rover’s movements from above.
There’s an old adage that says there is ‘nothing new under the Sun…’ but that doesn’t apply when it comes to solar eclipse science.
For over thirty years, the Hubble Space Telescope has been in continuous operation in Low Earth Orbit (LEO) and revealing never-before-seen aspects of the Universe. In addition to capturing breathtaking images of our Solar System and discovering extrasolar planets, Hubble also probed the deepest reaches of time and space, causing astrophysicists to revise many of their previously-held theories about the cosmos.
Earth is perfectly suited for organic life. It stands to reason then that similar worlds orbiting distant stars might also be rich with life. But proving it will be a challenge. One of the better ways to discover extraterrestrial life will be to study the atmospheres of inhabited exoplanets, but Earth is fairly small for a planet and has a thin atmosphere compared to larger worlds. It will be much easier to study the atmospheres of gas planets, but could such worlds harbor life? A new paper in Universe argues it could.
For centuries, human beings have speculated about the existence of planetary systems (much like our own) orbiting other stars. However, it has only been in the past few decades that scientists have been able to detect and study these distant worlds. To date, astronomers have used various methods to confirm the existence of 4,422 extrasolar planets in 3,280 star systems, with an additional 7,445 candidates awaiting confirmation.
After months of anticipation, U.S. intelligence experts have released a report citing 18 incidents since 2004 in which unidentified flying objects — or unidentified aerial phenomena, to use the Pentagon’s term — appeared to demonstrate breakthrough technologies.