Humans on Mars will need oxygen, and Mars’ atmosphere is pretty anemic when it comes to the life-sustaining element. NASA’s Perseverance rover successfully extracted oxygen from CO2 in Mars’ atmosphere, but there are other ways to acquire it. There seem to be vast amounts of water buried under the Martian surface, and oxygen in the water is just waiting to be set free from its bonds with hydrogen.
Space News & Blog Articles
To those familiar with optical telescopes, the idea of doing something to achieve higher resolution with their telescope may seem alien, if not, then practically impossible. A telescopes resolution is determined by among other things, its aperture – diameter of the thing that collects light (or electromagnetic radiation) and of course you can’t easily change that. Enter the team at ALMA, the Atacama Large Millimeter Array who have become the first to use the Band 10 receiver and extreme separation of the receivers to boosting its resolution so they can see detail equivalent of detecting a 10 meter long bus on the Moon!
In 2024, NASA will launch the Europa Clipper, the long-awaited orbiter mission that will fly to Jupiter (arriving in 2030) to explore its icy moon Europa. Through a series of flybys, the Clipper will survey Europa’s surface and plume activity in the hopes of spotting organic molecules and other potential indications of life (“biosignatures”). If all goes well, NASA plans to send a follow-up mission to land on the surface and examine Europa’s icy sheet and plumes more closely. This proposed mission is aptly named the Europa Lander.
Approximately 4.1 to 3.8 billion years ago, the planets of the inner Solar System experienced many impacts from comets and asteroids that originated in the outer Solar System. This is known as the Late Heavy Bombardment (LHB) period when (according to theory) the migration of the giant planets kicked asteroids and comets out of their regular orbits, sending them hurtling towards Mercury, Venus, Earth, and Mars. This bombardment is believed to have distributed water to the inner Solar System and maybe the building blocks of life itself.
Our view of the cosmos is always limited by the fact we are located within a galaxy filled with interstellar gas and dust. This is most dramatically seen in the central region of the Milky Way, which is filled with so much dust that it is sometimes referred to as the Zone of Avoidance. Within this zone, our observations of extragalactic objects are limited, but that is starting to change.
The ESO’s Atacama Large Millimeter/submillimeter Array (ALMA) is perched high in the Chilean Andes. ALMA is made of 66 high-precision antennae that all work together to observe light just between radio and infrared. Its specialty is cold objects, and in recent years, it has taken some stunning and scientifically illuminating images of protoplanetary disks and the planets forming in them.
In October 2023, NASA launched its long-awaited on-again, off-again Psyche mission. The spacecraft is on its way to study the metal-rich asteroid 16-Psyche, an M-type asteroid that could be the remnant core of a planetesimal that suffered a collision long ago. But understanding the giant, metal-rich asteroid isn’t the Psyche mission’s only goal.
On Earth, there is a phenomenon known as nightglow, where the atmosphere experiences faint light emissions that prevent the night sky from becoming completely dark. This is caused by various processes in the upper atmosphere, like the recombination of atoms, cosmic rays striking the atmosphere, or oxygen and nitrogen interacting with hydroxyl a few hundred kilometers from the surface. Thanks to data obtained by the ESA’s ExoMars Trace Gas Orbiter (TGO), the same phenomenon has been observed in the Martian atmosphere for the first time.
In September 2022, an automated sky survey detected what seemed to be a supernova explosion about one billion light-years away. The Zwicky Transient Facility (ZTF) spotted it and gave it the name AT2022tsd. But something was different about this supernova. Supernovae explode and shine brightly for months, while AT2022tsd exploded brightly and then faded within days.
Twenty-two light-years away, a rocky world orbits a red dwarf. It’s called LTT 1445Ac, and NASA’s Transiting Exoplanet Survey Satellite (TESS) found it in 2022. However, TESS was unable to gauge the small planet’s size.
I cannot for the life of me remember when it was or what it was but a fair few years ago I remember positioning a telescope to observe an asteroid as it silently and perhaps slightly eerily drifted between us and the Moon. I say eerily as this asteroid had the ability to cause widespread damage had it hit but of course we knew it posed no threat. I remember at the time thinking it was mind blowing that even today, we still use mathematics with roots (pardon the pun) centuries old to calculate the position of objects in our Solar System. We get to see evidence of this again on 12th December when something rare happens!
Our Solar System’s ice giants, Uranus and Neptune, have been largely left out of the planetary probe game. While all of the other planets—including even the demoted Pluto—have been the subjects of dedicated missions, the ice giants have not. In fact, the only spacecraft to ever even fly by Uranus and Neptune was Voyager 2 in the late 1980s.
Everyone knows that the James Webb Space Telescope is a ground-breaking infrared space telescope that’s helping us better understand the cosmos. The JWST’s discerning infrared eyes are deepening our understanding of everything from exoplanets to primitive galaxies to the birth of stars.
In the very early universe, physics was weird. A process known as “inflation,” where best we understand the universe went from a single infinitesimal point to everything we see today, was one such instance of that weird physics. Now, scientists from the Chinese Academy of Science have sifted through 15 years of pulsar timing data in order to put some constraints on what that physics looks like.
We’re inching closer and closer to reliably detecting biosignatures on distant planets. Much of the focus is on determining which chemicals indicate life’s presence.
For years, people noticed strange features on the Moon dubbed “Lunar Swirls.” They’re bright regions that appear to be concentrations of lighter-colored material on the surface. It turns out that interactions between the solar wind and magnetic regions on the Moon may play a role at two sites.
On November 2, Virgin Galactic flew Unity 2 on the Galactic 05 mission. It carried two scientists, a private tourist, and an astronaut trainer on a sub-orbital trip flown by Pilots Mike Massuci and Kelly Latimer. It was the company’s sixth successful flight in six months and the last for 2023.
The JWST has delivered a breakthrough in planetary science. Its observations show that a long-proposed theory of planet formation is true. Up until now, thick veils of dust in young solar systems have obscured the evidence.
In the next decade, NASA, China, and their international and commercial partners plan to establish habitats on the Moon. Through the Artemis Program, NASA will deploy the orbiting Lunar Gateway and the Artemis Base Camp on the lunar surface. Meanwhile, China (and its partner Roscosmos) will deploy the International Lunar Research Station (ILRS), consisting of an orbital and surface element. The creation of this infrastructure will enable a “sustained program of lunar exploration and development” that could lead to a permanent human presence there.
Japan has embarked on an exciting new lunar program that will test automated remote construction machinery for the Moon. In 2021, representatives from the Kajima Corporation, the National Research and Development Agency, the Japan Aerospace Exploration Agency (JAXA), and the Shibaura Institute of Technology announced they would be working with the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) to develop a next-generation construction system (A4CSEL®) that will enable the creation of lunar infrastructure.