Ever since the telescope was invented in 1608, astronomers have striven for bigger and better telescopes. When it comes to instruments to observe the sky, bigger really is better whether you are observing faint galaxies or planets a larger collector gives higher resolution and brighter images. A paper recently published looks into different kinds of orbits around Earth which support multiple telescope systems known as interferometers at different orbits.
Space News & Blog Articles
If the Universe has adolescent galaxies, they’re the ones that formed about 2 to 3 billion years after the Big Bang. New research based on the James Webb Space Telescope shows that these teenage galaxies are unusually hot. Not only that, but they contain some unexpected chemical elements. The most surprising element found in these galaxies is nickel.
Radioisotope Thermoelectric Generators (RTGs) have a long history of service in space exploration. Since the first was tested in space in 1961, RTGs have gone on to be used by 31 NASA missions, including the Apollo Lunar Surface Experiments Packages (ALSEPs) delivered by the Apollo astronauts to the lunar surface. RTGs have also powered the Viking 1 and 2 missions to Mars, the Ulysses mission to the Sun, Galileo mission to Jupiter, and the Pioneer, Voyager, and New Horizons missions to the outer Solar System – which are currently in (or well on their way to) interstellar space.
The Milky Way is a barred spiral galaxy, maybe even a grand design spiral galaxy. We can’t be sure from our vantage point. But one thing is certain: there aren’t many disk galaxies like it in our part of the Universe called the supergalactic plane.
I have lost count of how many times I have given public lectures and explained the temperature differences between Mercury and Venus. How Mercury, surprisingly isn’t the hottest planet in the Solar System and how that badge goes to Venus, thick atmosphere blah blah blah. Mercury and its complex surface geology does of course get a good chunk of time but a recent paper has rather caught my attention and turned what I thought I knew about Mercury on its head! In short, a team of scientists have announced evidence for salt glaciers on Mercury!
Anybody with a modicum of intellectual curiosity is looking forward to the NASA/ESA Mars Sample Return Mission. NASA’s Perseverance rover is busily collecting and caching samples for eventual return to Earth. While the technical and engineering challenges in getting those samples into scientists’ hands here on Earth are formidable, budgeting and funding might be the mission’s biggest headaches.
If there’s one chemical that causes excitement in the search for biosignatures on other worlds, it’s methane. It’s not a slam dunk because it has both biotic and abiotic sources. But finding it in an exoplanet’s atmosphere means that planet deserves a closer look.
The JWST is taking a break from studying the distant Universe and has trained its infrared eye on the heart of the Milky Way. The world’s most powerful space telescope has uncovered some surprises and generated some stunning images of the Milky Way’s galactic center (GC.) It’s focused on an enormous star-forming region called Sagittarius C (Sgr C).
It’s wonderful to watch the fascination on people’s faces when you explain to them that studying distant objects in the Universe means looking back in time! Reach out to the furthest corners of the Cosmos and you can see objects so far away that the light left them long before our Solar System even existed. With the commissioning of the JWST the race was on to push the boundaries even further and hunt down the most distant galaxy in the Universe and maybe even the first galaxies to ever have formed.
I can remember it very well, although not actually sure when it was, back around 1995/1996 I think. I was, like most other keen stargazers very familiar with the sight of Saturn with rings and all. Indeed the view of Saturn with its rings was one of the first things I had ever seen through a telescope and it inspired me into a lifetime passion of exploring the night sky. Every 15 years though, the Earth passes through the plane of the rings and from Earth they seem to vanish. Now, an astronomer has used data taken during such ring plane crossings from the Cassini spacecraft to measure the transparency of the rings.
Exoplanets are definitely a bit of a hot topic at the moment. Throw in a sprinkling of the James Webb Space Telescope (JWST) and you have the recipe for magic! I still cannot believe that we have discovered, yes actually discovered 5,539 exoplanets and there more being confirmed every day!The first exoplanet was discovered in 1992 and now over five and a half THOUSAND planets around other star systems are known! A team of astronomers have been exploring one in particular, the enigmatic WASP-107b using JWST and have made some incredible discoveries about its atmosphere.
While preparing for the threat of an asteroid strike might seem like a hypothetical exercise, it’s really not. The Solar System has calmed down a lot from earlier times when impacts were more frequent. But it is only a matter of time before an asteroid heads straight for Earth. The probability of an impact is not zero.
In the search for dark matter particles, there are two main approaches. The first is to look for particles that happen to decay naturally as they pass by. This typically involves neutrino observatories such as IceCube where a dark matter particle particle colliding with a nuclei might trigger a faint burst of light. So far this has turned up nothing. The second approach is to slam particles together in a particle accelerator. This approach has also failed to find dark matter particles, but there have been enough interesting hints that CERN is having a go. Their latest run is looking for what are known as dark photons.
Last year, astronomers warned that a large piece of debris was on a collision course with the Moon. Initially, they speculated that it was a SpaceX booster but later zeroed in on a Chinese Long March 3C rocket booster that launched the Chang’e 5 mission. When it did impact on March 4, 2022, astronomers noted a strange double crater.
After months of waiting, SpaceX made its second attempt at an orbital flight this past Saturday (November 18th). During their previous attempt, which occurred back in April, a fully-stacked Starship (SN24) and Super Heavy (BN7) prototypes managed to make it off the landing pad and reach an altitude of about 40 km (25 miles) above sea level. Unfortunately, the SN24 failed to separate from the BN7 booster a few minutes into the flight, causing the vehicle to fall into an uncontrolled tumble and forcing the ground teams to detonate the onboard charges.
Astrophysicists working with the JWST have found a surprising amount of metal in a galaxy only 350 million years after the Big Bang. How does that fit in with our understanding of the Universe?
When spacecraft land on the Moon, their exhaust strikes the powdery regolith on the lunar surface. The Moon has low gravity and no atmosphere, so the dust is thrown up in a huge plume. The dust cloud could possibly interfere with the navigation and science instruments or cause visual obstructions. Additionally, the dust could even be propelled into orbit, risking other spacecraft nearby.
If you’ve noticed a slowdown in Mars news lately, it’s because of the Sun. Or, rather, it’s because the Sun is temporarily blocking our “view” of the Red Planet, which is on the other side of the Sun from Earth, in what’s called “Mars Solar Conjunction.”
The rings of Saturn are some of the most well-known and captivating spectacles in the night sky, which are so large they can easily be observed with amateur telescopes or even a pair of high-powered binoculars. However, from time to time, Saturn’s rings “disappear” from view, a phenomenon known ring-plane crossing, with the rings being observed as a flat line running straight through the massive gas giant. Ring-plane crossing occurs approximately every 15 years and is slated to happen next in March 2025, with the rings slowly getting “larger” in the months afterwards before “disappearing” again in November 2025. But what causes ring-plane crossing?
Thanks to its infrared capabilities, the James Webb Space Telescope (JWST) allows astronomers to peer through the gas and dust clogging the Milky Way’s center, revealing never-before-seen features. One of the biggest mysteries is the star forming region called Sagittarius C, located about 300 light-years from the Milky Way’s supermassive black hole. An estimated 500,000 stars are forming in this region that’s being blasted by radiation from the densely packed stars. How can they form in such an intense environment?