Earth’s early history is marked by massive collisions with other objects, including planetesimals. One of the defining events in our planet’s history, the formation of the Moon, likely resulted from one of these catastrophic collisions when a Mars-sized protoplanet crashed into Earth. That’s the Giant Impact Hypothesis, and it explains how the collision produced a torus of debris rotating around the Earth that eventually coalesced into our only natural satellite.
Space News & Blog Articles
In about one year from now, the European Space Agency will launch its Hera mission. Its destination is the asteroid Didymos, and it’ll be the second human spacecraft to visit the 390-meter chunk of rock. NASA’s DART mission crashed a kinetic impactor into Didymos’ tiny moonlet Dimorphos as a test of planetary defence.
NASA’s Kepler mission ended in 2018 after more than nine years of fruitful planet-hunting. The space telescope discovered thousands of planets, many of which bear its name. But it also generated an enormous amount of data that exoplanet scientists are still analyzing.
NASA and aerospace company, Aerojet Rocketdyne, have successfully completed qualification testing of the Advanced Electric Propulsion System (AEPS), which is a 12-kilowatt, solar electric propulsion (SEP) engine being built for use for long-term space missions to the Moon and beyond, and AEPS is being touted as the most powerful electric propulsion—also called ion propulsion—thruster currently being manufactured. For context, 12 kilowatts are enough to power more than 1,330 LED light bulbs, and the success of these qualification tests come after NASA announced the beginning of qualification testing in July.
A pair of recent studies conduct in-depth analyses of Jupiter-sized exoplanets, also known as Exo-Jupiters, and were published in Nature Communications and The Astronomical Journal, respectively. The study published in Nature Communications was conducted by an international team of researchers and examines how Exo-Jupiters could be more common than previously thought, while the study published in The Astronomical Journal was conducted by one researcher and examines exoplanetary system, HD 141399, and how it is comprised entirely of Exo-Jupiters with no additional planets.
The Search for Extraterrestrial Intelligence (SETI) has evolved considerably in the past sixty years since the first experiment was conducted. This was Project Ozma, which was conducted in 1960 by Dr. Frank Drake and his colleagues using the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. While the experiment did not reveal any radio signals from space, it established the foundation upon which all future SETI is based. Like Ozma, the vast majority of these experiments have searched for possible technosignatures in the radio spectrum.
NASA’s Kepler spacecraft has discovered most of the confirmed exoplanets that we know of. But its successor, TESS (Transiting Exoplanet Survey Satellite), is catching up. New research announces the validation of eight more TESS candidates, and they’re all Super-Earths.
Astronomers have found plenty of white dwarf stars surrounded by debris disks. Those disks are the remains of planets destroyed by the star as it evolved. But they’ve found one intact Jupiter-mass planet orbiting a white dwarf.
If you, like me, have used telescopes to gaze out at the wonders of the Universe, then you too may have been a little captivated by the topic of gravitational lensing. Think about it: how cool is it that the very universe we are trying to explore is actually providing us with telescopes to probe the darkest corners of space and time?
What’s going on with Betelgeuse? In recent years it’s generated a lot of headlines as its luminosity has shifted dramatically several times. The red supergiant brightened by almost 50% earlier this year, triggering speculation that it may go supernova.
According to new research we can start writing the eulogy for four exoplanets around a Sun-like star about 57 light years away. But there’s no hurry; we have about one billion years before the star becomes a red giant and starts to consume them.
Astronomers are currently pushing the frontiers of astronomy. At this very moment, observatories like the James Webb Space Telescope (JWST) are visualizing the earliest stars and galaxies in the Universe, which formed during a period known as the “Cosmic Dark Ages.” This period was previously inaccessible to telescopes because the Universe was permeated by clouds of neutral hydrogen. As a result, the only light is visible today as relic radiation from the Big Bang – the Cosmic Microwave Background (CMB) – or as the 21 cm spectral line created by the reionization of hydrogen (aka. the Hydrogen Line).
Large-scale sky surveys are set to revolutionize astronomy. Observatories such as Vera Rubin and others will allow astronomers to observe how the sky changes on the scale of days, not weeks or months. They will be able to capture transient events such as supernovae in their earliest stages and will discover near-Earth asteroids we have missed in the past. At the same time, the rise of satellite constellations such as Starlink threatens to overwhelm these surveys with light pollution and could threaten their ability to succeed.
Astronomers have discovered two known interstellar objects (ISO), ‘Oumuamua and 21/Borisov. But there could be thousands of these objects passing through the Solar System at any time. According to a new paper, the upcoming Vera Rubin Telescope will be a fantastic interstellar object hunter, and could possibly find up to 70 objects a year coming from other star systems.
The Crab Nebula – otherwise known as the first object on Charles Messier’s list of non-cometary objects or M1 for short – has never really failed to visually underwhelm me! I have spent countless hours hunting down this example of a supernova remnant and found myself wondering why I have bothered. Yet here I am, after decades of looking at it, and I still find it one of the most intriguing objects in the sky.
Every year, NASA’s Breakthrough, Innovative, and Game-Changing (BIG) Idea Challenge invites student innovators to build and demonstrate concepts that can benefit future human missions to the Moon and beyond. This year’s theme is “Inflatable Systems for Lunar Operations,” which could greatly reduce the mass and stowed volume of payloads sent to the Moon. This is critical for the Artemis Program as it returns astronauts to the Moon for the first time since the Apollo Era over fifty years ago. It will also reduce the costs of sending payloads to the Moon, Mars, and other deep-space destinations.
The Fomalhaut system is nearby in astronomical terms, and it’s also one of the brightest stars in the night sky. That means astronomers have studied it intensely over the years. Now that we have the powerful James Webb Space Telescope the observations have intensified.
With thousands of known exoplanets and tens of thousands likely to be discovered in the coming decades, it could be only a matter of time before we discover a planet with life. The trick is proving it. So far the focus has been on observing the atmospheric composition of exoplanets, looking for molecular biosignatures that would indicate the presence of life. But this can be difficult since many of the molecules produced by life on Earth could also be produced by geologic processes. A new study argues that a better approach would be to compare the atmospheric composition of a potentially habitable world with those of other planets in the star system.