RALEIGH, N.C. — Particle physicist Hitoshi Murayama admits that he used to worry about being known as the “most hated man” in his field of science. But the good news is that now he can joke about it.
Space News & Blog Articles
We are all familiar with the atmosphere of the Earth and part of this, the ionosphere, is a layer of weakly ionized plasma. It extends from 50 to 1,500 km above the planet. It’s a diffuse layer but sufficient to interfere with satellite communications and navigation systems too. A team of researchers have come up with an intriguing idea to utilise millions of mobile phones to help map the ionosphere by relying on their GPS antennas.
Imagine a black hole with the mass of the asteroid Ceres. It would be no larger than a bacterium and practically undetectable. But if such black holes are common in the Universe, they would affect the motions of stars and galaxies, just as we observe. Perhaps they are the source of dark matter.
The seasonal variations of methane in the Martian atmosphere is an intriguing clue that there might be life hiding under the surface of the red planet. But we won’t know for sure until we go digging for it.
For decades, astronomers have used powerful instruments to capture images of the cosmos in various wavelengths. This includes optical images, where visible light is observed, and images that capture non-visible radiation, ranging from the radio and infrared to the X-ray and Gamma-ray wavelengths. However, these two-dimensional images do not allow scientists to infer what the objects look like in three dimensions. Transforming these images into a 3D space could lead to a better understanding of the physics that drives our Universe.
Ever since William Herschel discovered Uranus in 1781, astronomers have been eager to find new planets on the outer edge of the solar system. But after the discovery of Neptune in 1846, we’ve found no other large planets. Sure, we discovered Pluto and other dwarf planets beyond it, but nothing Earth-sized or larger. If there is some planet nine, or “Planet X” lurking out there, we have yet to find it.
A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful, gaseous filaments. The Hubble captured the pair, named R Aquarii, and their symbiotic interactions. Every 44 years the system’s violent eruptions blast out filaments of gas at over 1.6 million kilometers per hour.
In the earliest moments of the Universe, the first photons were trapped in a sea of ionized gas. They scattered randomly with the hot nuclei and electrons of the cosmic fireball, like tiny boats in a stormy sea. Then, about 370,000 years after the big bang, the Universe cooled enough for the photons to be free. After one last scattering, they could finally ply interstellar space. Some of them traveled across 14 billion years of space and time to reach Earth, where we see them as part of the cosmic microwave background. The remnant first light of creation.
Space tourism here is here to stay, and will likely remain a permanent fixture of near-Earth activities for the foreseeable future. But is it worth it?
In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an equation to calculate the number of detectable extraterrestrial civilizations in our Milky Way. Rather than being a scientific principle, the equation was intended as a thought experiment that summarized the challenges SETI researchers faced. This became known as the Drake Equation, which remains foundational to the Search for Extraterrestrial Intelligence (SETI) to this day. Since then, astronomers and astrophysicists have proposed many updates and revisions for the equation.
The Pentagon office in charge of fielding UFO reports says that it has resolved 118 cases over the past year, with most of those anomalous objects turning out to be balloons. But it also says many other cases remain unresolved.
The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving its biogeochemical cycles, climate, and feedback loops that keep it habitable. It’s associated with the Gaia Hypothesis developed by James Lovelock. How can we detect these worlds if they’re out there?
In March 2021, astronomers observed a high-energy burst of light from a distant galaxy. Assigned the name AT 2021hdr, it was thought to be a supernova. However, there were enough interesting features that flagged as potentially interesting by the Automatic Learning for the Rapid Classification of Events (ALeRCE). In 2022, another outburst was observed, and over time the Zwicky Transient Facility (ZTF) found a pattern of outbursts every 60–90 days. It clearly wasn’t a supernova, but it was unclear on what it could be until a recent study solved the mystery.
When it comes to telescopes, bigger really is better. A larger telescope brings with it the ability to see fainter objects and also to be able to see more detail. Typically we have relied upon larger and larger single aperture telescopes in our attempts to distinguish exoplanets around other stars. Space telescopes have also been employed but all that may be about to change. A new paper suggests that multiple telescopes working together as interferometers are what’s needed.
Pluto may have been downgraded from full-planet status, but that doesn’t mean it doesn’t hold a special place in scientist’s hearts. There are practical and sentimental reasons for that – Pluto has tantalizing mysteries to unlock that New Horizons, the most recent spacecraft to visit the system, only added to. To research those mysteries, a multidisciplinary team from dozens of universities and research institutes has proposed Persephone – a mission to the Pluto system that could last 50 years.
If you were lucky enough to observe a total eclipse, you are certain to remember the halo of brilliant light around the Moon during totality. It’s known as the corona, and it is the diffuse outer atmosphere of the Sun. Although it is so thin we’d consider it a vacuum on Earth, it has a temperature of millions of degrees, which is why it’s visible during a total eclipse. According to our understanding of black hole dynamics black holes should also have a corona. And like the Sun’s corona, it is usually difficult to observe. Now a study in The Astrophysical Journal has made observations of this elusive region.
Despite the fact that our universe is old, cold, and well past its prime, it’s not done making new galaxies yet.
The New Zealand Astrophotography Competition showcases and recognizes some of the most stunning images of the southern hemisphere’s night sky. This year, photographers from across New Zealand have captured some incredibly breathtaking skyscapes such as amazing auroras, stunning images of our Solar System, and deep-sky marvels.
At the centre of most galaxies are supermassive black holes. When they are ‘feeding’ they blast out jets of material with associated radiation that can outshine the rest of the galaxy. These are known as quasars and they are usually found in regions where huge quantities of gas exist. However, a recent study found a higher than expected number of quasars that are alone in the Universe. These loners are not surrounded by galaxies nor a supply of gas. The question therefore remains, how are they shining so brightly.
An 11-page document that’s attributed to a Pentagon whistleblower has provided new cases in the controversy over unidentified anomalous phenomena — also known as UAPs, unidentified flying objects or UFOs.
One of the most challenging aspects of astrobiology and the Search for Extraterrestrial Intelligence (SETI) is anticipating what life and extraterrestrial civilizations will look like. Invariably, we have only one example of a planet that supports life (Earth) and one example of a technologically advanced civilization (humanity) upon which to base our theories. As for more advanced civilizations, which statistically seems more likely, scientists are limited to projections of our own development. However, these same projections offer constraints on what SETI researchers should search for and provide hints about our future development.

